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NUMERICAL SIMULATION AND MULTI-OBJECTIVE  
OPTIMIZATION OF ULTRA-LOW NITROGEN BURNERS 

FOR ETHYLENE CRACKING FURNACES 

 
Coupled numerical simulation and multi-objective optimization for ultra-low nitrogen burners of 

ethylene cracking furnaces using a fast response surrogate model for combustion are proposed. Firstly, 
based on simplified reaction mechanisms involving 29 species and 164 reactions, a computational fluid 
dynamics (CFD)-coupled model for turbulent combustion is established. Secondly, a multi-objective 
optimization scheme based on a strong generalization-based surrogate model is developed for ultra-
low nitrogen burners of ethylene cracking furnaces. The results show that a set of optimal operating 
parameters for the cracking furnace, i.e., the excess air coefficient of 1.07, the fuel gas flow rate of 
0.192 kg/s, and the air preheating temperature of 380 K, is obtained. The optimal NOx emission con-
centration decreased from 75.38 mg/m3 of the original scheme to 71.2 mg/m3, i.e., a decrease of 5.55%. 
The thermal efficiency of the firebox increased from 43.82% of the original scheme to 44.49%, i.e., an 
increase of 1.53%, which provides theoretical guidance for energy conservation and emission reduction 
of cracking furnaces. 

1. INTRODUCTION 

The optimization design of ultra-low nitrogen burners plays an important role in 
controlling pollutant emissions in industry and is an important part of green, environ-

 _________________________  
1Key Laboratory of Smart Manufacturing in Energy Chemical Process of Ministry of Education, East 

China University of Science and Technology, Shanghai 200237, China, corresponding author G. Hu, email 
address: huguihua@ecust.edu.cn 

2Engineering Research Center of Process System Engineering, Ministry of Education, East China Uni-
versity of Science and Technology, Shanghai 200237, China. 

3CIBFINTECH, No. 2977 Chuansha Road, Pudong New Area, Shanghai 200131, China. 

mailto:huguihua@ecust.edu.cn


38 G. HU et al. 

mentally friendly, and sustainable development. However, combustion technology op-
timization focuses on improving final product processing and energy conservation, and 
little attention is paid to NOx emission reduction indicators. With the development of 
green intelligent manufacturing, multi-objective optimization research that considers 
both product yield and pollutant emissions has received widespread attention [1, 2]. 

With the rapid development of computational fluid dynamics (CFD) simulation 
technology, simulation models can be used to predict various systems performances for 
various engineering problems, and the cost of time and economy for research has been 
greatly reduced. However, to pursue the accuracy of numerical simulation, simulation 
models have become increasingly complex, and the computational expense has grown 
several times or even tens of times. For example, in the combustion optimization of 
cracking furnaces, performing a simulation requires analyzing thousands of Navier 
–Stokes equations with source terms, and optimization problems often require several 
simulations to achieve good results [3]. Even for advanced modern computers, such 
computational complexity is too large, and the high time cost seriously limits the appli-
cation of excellent simulation models in engineering problems. At the same time, CFD 
simulation lacks globality, and it is not easy to achieve a comprehensive relationship 
between input and output solely through simulation experiments. To solve these prob-
lems, an effective method is to establish a combustion surrogate model for the cracking 
furnace. Common surrogate modeling techniques include the response surface method-
ology (RSM) [4], Kriging model [5], support vector regression (SVR) model [6], back-
propagation (BP) neural network [7], radial basis function (RBF) neural network [8], 
convolutional neural network (CNN) [9], and the application of these surrogate mod-
els [10]. Aboaba et al. [11] used intelligent algorithms to construct a surrogate model 
for a high-pressure combustion facility exceeding 400 W. The model was created using 
only eight CFD simulation runs, which can replicate the detailed distribution of pres-
sure, temperature, and flue gas component concentration in the CFD simulation model 
with less than 10% error within just a few seconds. Yao et al. [12] proposed a Kriging- 
-assisted reference vector guided evolutionary algorithm (K-RVEA) optimization frame- 
work, which optimized the parameters of the combustion CFD model and studied the effect 
of burner structure on NOx emissions. 

In actual production, it is often faced with the problem of simultaneously optimizing 
two or more objectives, and these optimization objectives have mutual constraints [13], 
called multi-objective optimization problems [14]. Previous experts often relied on ex-
perience to adjust parameters for optimal production performance. On the one hand, this 
made the obtained optimal value easily fall into local optimal solutions. On the other 
hand, a shutdown is often required for adjustment due to inaccurate predictions, result-
ing in huge economic losses [15]. With the rapid development of computer technology, 
mathematical analysis, and machine learning algorithms, the use of artificial intelli-
gence algorithms for data-driven modeling and optimization has provided new solutions 
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for industrial problems. Menzel et al. [16] used the non-dominated sorting genetic algo-
rithm II (NSGA-II) algorithm and the multi-objective evolutionary algorithm based on 
the decomposition (MOEA/D) algorithm for multi-objective optimization of engine 
thermal efficiency, seeking the optimal valve opening and closing conditions. After 
comparative analysis, the MOEA/D algorithm has more non-dominated solution sets, 
larger super volumes, and less computational time. Sener and Gül [17] optimized the 
geometric shape of compression ignition engines based on CFD technology and used 
a multi-objective genetic algorithm (MOGA) to automatically change and design opti-
mization parameters. The final established geometric dimensions and injection param-
eters significantly reduced NOx and smoke emissions, while improving fuel efficiency. 

Accurately establishing a combustion reaction mechanism model for NOx emissions 
is the basis for optimizing the design of ultra-low nitrogen burners. The combination of 
surrogate models and CFD to improve the quality and prediction speed of the training 
dataset is becoming a new trend. However, research on surrogate models for turbulent 
combustion processes in ultra-low nitrogen burners of ethylene cracking furnaces has 
not been reported in the literature. This article aims to propose a multi-objective opti-
mization design method for ultra-low nitrogen burners that is suitable for industrial 
practice. Specifically, a comprehensive application of CFD modeling, simplified reac-
tion kinetics mechanism, surrogate model, and multi-objective optimization methods 
are used to construct the optimization design of operating parameters for the ultra-low 
nitrogen burner of the cracking furnace. Firstly, a coupled CFD model for turbulent 
combustion in a cracking furnace is established. The NOx generation mechanism adopts 
GRI-Mech 3.0 [18], and its NOx generation in the cracking furnace mainly consists of 
thermal NO and prompt NO. The impact of combustion characteristics in the cracking 
furnace on NOx generation is analyzed. Secondly, the direct relationship graph (DRG) 
combined with the computational singular perturbation (CSP) method is applied to rea-
sonably simplify the detailed reaction kinetics mechanism of GRI3.0 methane combus-
tion, which can improve calculating speed by 60%. Thirdly, by comparing the simula-
tion and generalization capabilities of the RBF neural network and SVR model, the RBF 
neural network is selected as the surrogate model of ultra-low nitrogen burners of eth-
ylene cracking furnaces. Finally, the NOx emission concentration and thermal efficiency 
of the firebox are optimized by NSGA-II, and the optimal operating parameter scheme 
that meets the NOx emission reduction and energy conservation indicators is obtained. 

2. CFD SIMULATION 

2.1. FURNACE GEOMETRY AND CONDITION BOUNDARY 

Because this paper mainly studies the generation of pollutants during the combus-
tion process, the reactor tubes are not considered. The geometric model of the cracking 
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furnace in this study is shown in Fig. 1a. The total size is 18.94 m (length) × 3.56 m 
(width) × 13.707 m (height), and 36 non-premixed multi-stage fuel bottom burners are 
installed near the walls on both sides. Both sides of the furnace wall are equipped with 
48 premixed burners. The reactor tubes are divided into inlet and outlet ones with dif-
ferent diameters and are vertically suspended in the center of the furnace. Each multi-
stage fuel burner is equipped with one preheating air inlet, one primary fuel gas inlet for 
main combustion, and four secondary fuel gas inlets for auxiliary combustion. Two 
rows of 48 premixed burners are evenly arranged on the walls on both sides of the fur-
nace, with the flue gas outlet located at the top of the furnace. To simplify the calcula-
tion, this paper uses a 1/6 furnace structure based on the principle of symmetry for nu-
merical simulation and uses Gambit to mesh the cracking furnace, as shown in Fig. 1b. 

 

Fig. 1. Geometry (a) and mesh (b) of the ethylene cracking furnace 

The inner wall of the furnace is mainly composed of refractory bricks, mixed with 
some insulation cotton and refractory materials to maintain temperature. It can be de-
fined as the heat flux wall surface, with a value of 972 W/m2. The flow and heat transfer 
of fluid near the wall is approximated by the standard wall function. The initial outer 
wall temperature of the reactor tube is assumed to be based on industrial production 
practice and operational experience. The initial temperature boundary conditions are 
imported into Fluent 19.1 [19] for calculation through a user-defined function (UDF). 
The fuel gas inlet flow rate, air inlet flow rate, and corresponding temperature, pressure, 
and hydraulic diameter of the bottom burners and sidewall burners are determined based 
on actual industrial production. The operating conditions of the ethylene cracking fur-
nace are shown in Table 1. 
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 T a b l e  1  

Operating conditions of ethylene cracking furnace 

Item Mass flow rate 
[kg/s] 

Temperature 
[K] 

Gauge pressure 
[Pa] 

Hydraulic diameter 
[m] 

Bottom burners 0.1813 300 120 000 0.024 
Sidewall burners 0.6682 300 120 000 0.0953 
Air inlet 3.3842 298 101 325 0.246 
Furnace outlet – – –50 – 
Fuel composition, wt. %     
CH4 97.686    
H2 0.51686    
CO 0.89768    
C2H4 0.89946    

2.2. NUMERICAL MODELS 

Flow model. Reynolds-averaged Navier–Stokes equations are used for the turbulent 
flow model of the ethylene cracking furnace, closed with the standard k–ε model [20]. 
Control equations include mass, momentum, energy, and species equations. These equa-
tions have similarities in form and can be expressed in the following general form: 

 ( ) ( )j

j j j
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t x x xφ φ
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where ρ is gas density, φ  represents the dependent variables, t is time, Uj is the velocity 
component in the jth direction, xj is the coordinate direction in the jth direction, Γφ the 
generalized diffusion coefficient, Sφ is the source term. 

Combustion model. The eddy dissipation concept (EDC) model [21] is used to es-
tablish the combustion model. Due to the slow reaction rate of NOx and CO emissions 
in cracking furnace combustion, the EDC model assumes that molecular mixing and 
subsequent reactions occur in a small turbulent structure on the Kolmogorov scale, 
where turbulent kinetic energy is dissipated into heat. Considering that the EDC model 
considers the detailed combustion chemical reaction mechanism in the turbulent struc-
ture, it can more accurately track the chemical reaction process, and its coupling with 
the turbulent model is more in line with the actual physical phenomena in the cracking 
furnace. The net rate of production of species by chemical reaction Ri in the conservation 
equation for the mean species i, Eq. (1), is calculated as 
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where the asterisk denotes fine-scale quantities, τ* is the time scale, Yi is the mass frac-
tion of species i, Yi is the fine-scale species mass fraction after reacting over time τ*. ξ is 
the length fraction of the fine scales. 
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where ν is kinematic viscosity, k is turbulent kinetic energy, ε is the dissipation rate of 
turbulent kinetic energy. 

NO model. In this study, the detailed reaction kinetics mechanism of GRI 3.0 me-
thane combustion is used to establish the combustion reaction kinetics model of the 
ethylene cracking furnace. The main fuel is natural gas, which itself does not contain 
nitrogen elements, so fuel NOx does not need to be considered. Prompt NOx is mainly 
generated by the reaction of N2 in the combustion air and hydrocarbons in areas with 
fuel-rich and low-temperature. The production amount in the cracking furnace combus-
tion is very small. Thermal NOx is produced by the high-temperature oxidation of N2 in 
the air. In flames with a chemical equivalence ratio of less than 1, the main region of 
NO generation is at the rear end of the flame. Zeldovich [22] first proposed the reaction 
mechanism of thermal NOx. The main chain reactions from high-temperature oxidation 
of N2 to formation of NOx are as follows: 

 2N  + O NO + N  (5) 

 2N + O NO + O  (6) 

When there is an excess of fuel, a third reaction needs to be added: 

 N + OH NO + H  (7) 

Radiation model. In the ethylene cracking furnace, the main form of heat transfer is 
radiation, which is modeled using a discrete ordinate (DO) radiation model [23]. 

 ( ) ( ) ( ) ( ) ( )
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where r is position vector, s  is direction vector, ′s  is scattering direction vector, s is 
path length, α is absorption coefficient, n is refractive index, σ is the Stefan–Boltzmann 
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constant (5.67×10–8 W/(m2·K4)), Sσ  is scattering coefficient, I is radiation intensity, 
T is temperature, Φ is phase function, Ω ′ is solid angle. 

The weighted-sum-of-gray-gases model (WSGGM) is used to calculate the radia-
tion characteristics of flue gas [24]. This model divides the emissivity of the real gas 
into the weighted sum of the emissivity of several gray gases and a transparent gas, 
which has high computational accuracy and efficiency. 

2.3. NUMERICAL METHOD AND NUMERICAL SIMULATION 

For discrete schemes such as mass, momentum, and energy, a second-order upwind 
scheme is used, and the flow field calculation uses the semi-implicit solution of the 
pressure simultaneous equation (SIMPLE). Except for energy and radiation equations, 
the residual convergence standard is 10–6, and all other equations have residual conver-
gence standards of 10–3. 

 

Fig. 2.  Flue gas temperature contour (a) and mass fraction of NO contour  
along the width direction of the furnace (b) 

Figure 2a shows the flue gas temperature contour at different sections along the 
width of the furnace. At the bottom of the furnace, the poor mixture of high-velocity 
fuel gas and air results in incomplete combustion, which reduces heat release, leading 
to a low flue gas temperature. In the middle of the furnace, the fuel gas velocity de-
creases, and the air and fuel mix well, resulting in violent reactions and a large amount 
of heat release. The mass fraction of NO contour along the width is shown in Fig. 2b. 
The main generation area of NO in the furnace is around the height of 4–6 m. In this 
area, the fuel gas and air mix well, and the combustion reaction is intense. The local 
temperature in the furnace increases sharply, and the nitrogen in the air is oxidized at 
high temperatures, resulting in a large amount of thermal NO. 
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T a b l e  2  

Simulation results and industrial data 

 Industrial data Simulation data 
Flue gas outlet temperature, ℃ 1124 1137 
Excess oxygen ratio, wt. % 1.77 1.60 
NOx emission concentration, mg/m3 78.08 75.38 

 
Table 2 shows simulation results and industrial data. The simulated temperature of 

outlet flue gas, excess oxygen ratio and NOx emission are in agreement with the indus-
trial data. It shows that the simulation results are reliable. The results can be used to 
analyze the velocity, temperature, and species concentration distributions in the crack-
ing furnace. 

3. SIMPLIFICATION OF THE COMBUSTION REACTION MECHANISM 

3.1. SIMPLIFIED MODEL OF REACTION KINETICS 

In the detailed reaction kinetics mechanism for methane combustion, GRI-Mech 3.0 
which contains 53 species, and 325 reactions is currently the most widely used. How-
ever, in the simulation of the cracking furnace mentioned above, the turbulent combus-
tion model coupled with the numerical calculations of the reaction kinetics mechanism 
takes too long. Due to the large number of components and significant time scale dif-
ferences in the detailed reaction kinetics mechanism, this article first uses the DRG 
method to simplify the framework of the GRI-Mech 3.0 detailed reaction kinetics mech-
anism and then uses the CSP method to remove some reactions from the time scale to 
eliminate the “rigidity” problem of the reaction system. Therefore, it is proposed to use 
the DRG method combined with the CSP method to simplify the detailed reaction mech-
anism and verify the calculation results by comparing it with the detailed mechanism in 
a 0-dimensional homogeneous burner. 

For the DRG method, the determination of initial species is crucial for reaction sim-
plification. CH4, CO, CO2, and O2 which have a significant impact on the concentration 
of methane combustion products are selected as the initial species. Additionally, be-
cause this paper aims to achieve an accurate prediction of NOx, NO, and N2 are also set 
as the initial species. The generation rate of each species in each elementary reaction is 
calculated in a 0-dimensional homogeneous combustion model by using Chemkin [25] 
and exported in the form of an Excel file. According to Eq. (9), the normalized contri-
bution of the remaining species B to the production rate of the initial species A, RAB, is 
individually calculated in the detailed reaction mechanism. If the RAB of a species for all 
initial species is less than the threshold ε, this species can be regarded redundant, and 
all elementary reactions it participates in can be removed. 
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where δBI = 1 if the ith elementary reaction involves species B, δBI = 0 otherwise. νA, i is 
the stoichiometric coefficient of species A in the ith reaction, ωi is the net reaction rate 
of the ith reaction. 

Considering the simplification time and the accuracy of simplification results, the 
threshold value is ε = 0.01. After the above process, 18 components including CH2OH, 
CH3OH, C2H5, C2H6, CH2CO, CH2CHO, NH2, and 115 related elementary reactions are 
removed, resulting in a simplified mechanism consisting of 35 species and 210 reactions. 

Next, the CSP method is used to further reduce the simplified reaction kinetics mech-
anism mentioned above. For a reaction system containing N unknown quantities and R re-
actions, the N system variables can be represented by an N-dimensional column vector

1 2( , , ..., ) ,N Ty y y y=  which includes physical quantities such as temperature and chemi-
cal composition. The governing ordinary differential equation can be expressed as: 

 ( , )dy g y t
dt

=  (10) 

where g(y, t) is the sum of contributions from the R elementary reactions: 
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where sr and ( , )rF y t  are the generalized stoichiometric vector and reaction rate of the 
rth elementary reaction, respectively. The assumption is that an(t) is a set of N linearly 
independent column basis vectors, and bn(t) is a set of N inverse row basis vectors, where 
bi(t)·ai(t) = .i

jδ  Then, g(y, t) can be expressed as the sum of N reaction modes: 
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where an
 and fn are the direction and amplitude of the nth mode, respectively, and their phys-

ical meanings are the effective generalized stoichiometric vector and effective reaction rate 
of the nth mode, respectively. n

rB is called the augmented stoichiometric coefficient. 
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The participation index n
rP  indicates the degree of participation of the ith basic re-

action in the nth mode 
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where ∆y is the allowable error vector of the unknown quantity, and ∆t is the time scale. 
If the participation index of an elementary reaction is less than a given threshold εp, 

it can be considered a reaction with weak participation and can be removed. 

 

Fig. 3. Simplified calculation process for GRI-Mech3.0 reaction mechanism 

After simplifying the primary skeleton reaction mechanism, the elementary reac-
tions containing components with smaller reaction contribution rates have been re-
moved. The simplified mechanism based on the DRG method is introduced into a 0-dimen-
sional homogeneous burner for simulation combustion, and chemical reaction kinetics 
data, including elementary reaction rate, stoichiometry coefficient, and component con-
centration, are obtained. The stoichiometric number matrix and reaction rate corre-
sponding to each elementary reaction are imported into Matlab to obtain sr and Fr. Pro-
ceed to the next step, the Jacobian matrix of the reaction system is calculated. Next, the 
Chemkin species concentration file is used to determine the start and end time of the 
reaction, and the species concentration at the time is brought into the Jacobian matrix. 
The eigenvalues and eigenvectors of the Jacobian matrix at that time are solved. The 
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number of fast modes is determined based on these eigenvalues, and the eigenvectors 
are considered trial basis vectors. Then, the correction method provided by the CSP 
theory is used to correct the trial basis vectors, and thereby the Jacobian matrix region 
is diagonalized and the decoupling of fast and slow modes is achieved. Finally, the 
modified basis vectors are used to obtain a fast spatial mapping matrix, and the quasi-
steady species are identified. These identified quasi-steady species and their involved 
elementary reactions are removed from the reaction system. We set the threshold values 
of time scale, ∆t = 0.02, and threshold values of , 0.01,n

r pP ε =  with an allowable error 
∆y of 10%. Six quasi-steady state species such as C2H3, CH3O, HCN, and 46 different 
important elementary reactions are further identified. After removing these components 
and reactions, the primary mechanism is simplified to a reaction mechanism containing 
164 reactions of 29 species. The calculation process is shown in Fig. 3. 

  

Fig. 4. Ignition delay times of detailed GRI3.0 
 mechanism and 164-step simplified mechanism: 

a) Φ = 0.8, b) Φ = 1.0, c) Φ =1.2  

To verify the accuracy of the simplified mechanism, a 0-dimensional homogeneous 
combustion model of Chemkin software is used to compare the detailed reaction mech-
anism of GRI3.0 with the established 164-step simplified reaction mechanism. The ini-
tial equivalence ratios are 0.8, 1, and 1.2, pressures are 0.1, 0.5, and 1 MPa, and tem-
peratures are varied between 1000 and 1800 K. The ignition delay time on the vertical 
axis is dimensionless using the natural logarithm of ignition delay time. The test results 
are shown in Fig. 4. The results show that the simplified mechanism has good reliability 
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under a wide range of operating conditions, and the average error of ignition delay time 
is less than 5%. 

3.2. VERIFICATION FOR FLAME D 

In Flame D [26], the fuel stream containing one-quarter methane and three-quarters 
air is ejected from the main jet at a velocity of 49.6 m/s. The pilot jet is an annular stream 
that tightly surrounds the main jet with an outer diameter of 18.2 mm and an inlet ve-
locity of 11.4 m/s. The air co-flow surrounds the pilot jet with a velocity of 0.9 m/s. The 
structures and operating conditions of Flame D are shown in Table 3. 

 T a b l e  3  

Structures and operating conditions of Flame D 

Item Main jet Pilot jet Air co-flow 
Diameter/length×width, mm 7.2 18.2 300×300 
Temperature, K 294 1880 291 
Velocity, m/s 49.6 11.4 0.9 
Components (mass fraction)    
CH4 0.156 0 0 
O2 0.197 0.054 0.23 
N2 0.647 0.742 0.77 
CO2 0 0.110 0 
H2O 0 0.094 0 

 

Fig. 5. Temperature along the axial direction  

This paper adopts the standard k–ε turbulent flow model and EDC combustion 
model, which are respectively combined with the detailed reaction kinetics mechanism 
of GRI-Mech 3.0 and the simplified mechanism established above to simulate the Flame D 
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combustion process. In the following description, the axial length is dimensionless us-
ing the diameter d of the main jet. Figure 5 shows temperature distribution along the 
central axis. It can be seen that the average flame temperature reaches its peak at about 
x/d = 45, approximately 2000 K. At the same time, in areas with high-temperature gra-
dients, the average flame temperature of simplified mechanism is slightly higher than 
that of experimental data, but the highest flame temperature of the two is highly con-
sistent with its average temperature after combustion stability.  

 

Fig. 6. NO mass fraction along the axial direction 

Figure 6 shows the distribution of the NO mass fraction for two simulations and 
experimental data along the central axis. The concentration of NO first increases and 
then decreases with the change of combustion adequacy, with a maximum value at x/d 
equal ca. 50. Because Flame D is a diffusion flame, there are reaction layers with high 
temperatures even in the vicinity of the fuel nozzle exit, which produces NO through 
the Zeldovich mechanism. The decrease in NO concentration in the far field is probably 
due to the dilution resulting from the entrainment of ambient air. From this, it can be 
verified that the simplified mechanism containing 164 steps of elementary reactions has 
good computational accuracy in three-dimensional simulation calculations. The calcu-
lation speed of the coupled simplification mechanism has increased by about 60%, 
greatly improving the efficiency of the simulation. 

4. OPTIMIZATION OF ULTRA-LOW NITROGEN BURNERS 

4.1. MULTI-OBJECTIVE OPTIMIZATION STRATEGY 

Pollutant emissions and thermal efficiency of the firebox are two important perfor-
mance indicators of ethylene cracking furnace. Numerous studies and practices have 
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shown that the yield of cracking products ethylene is directly proportional to the average 
coil outlet temperature (COT) of the reactor tube within a considerable temperature range 
[27, 28]. The heat load of the firebox is an important factor affecting COT. According to 
the NOx generation mechanism, the strategy of ultra-low nitrogen combustion tends to 
reduce the temperature of the main combustion zone as much as possible, which reduces 
the heat load of the firebox and affects the product yield. Thus there is often a mutually 
restrictive relationship between the amount of NOx generated and the thermal efficiency 
of the firebox. To solve this problem, this paper aims to optimize the performance of the 
cracking furnace through multi-objective optimization research. Therefore, the decision 
variables are necessary that affect the combustion of the cracking furnace and the target 
variables to be optimized. The combustion air is an important factor affecting the emission 
of pollutants from cracking furnaces [29]. On the one hand, appropriately increasing the 
air preheating temperature in the cracking furnace will promote fuel combustion, reduce 
chemical incomplete combustion losses, and improve the thermal efficiency of the crack-
ing furnace [30, 31], but increasing the air preheating temperature will also increase NO 
emissions. To achieve the effect of ensuring the heat demand of the cracking furnace while 
reducing NO, it is necessary to seek an optimal air preheating temperature to achieve 
a balance between the two needs. On the other hand, under low excess air coefficient, the 
fuel will fully burn, which not only reduces the NO generation rate but also improves the 
thermal efficiency of the cracking furnace. However, if the excess air coefficient is too 
low, it will increase the CO generation rate and reduce thermal efficiency, so there is 
a minimum limit to the excess air coefficient. Thus the study selects the excess air coeffi-
cient, fuel gas flow rate, and air preheating temperature as decision variables. 

The efficiency of the reactor tube absorbing heat largely represents the thermal effi-
ciency of the firebox. Due to the difficulty in simulating the convection section of the 
cracking furnace, this paper uses the thermal efficiency of the firebox to characterize the 
energy proportion of fuel gas supply to the reactor tube. The NOx emission concentration 
and thermal efficiency of the firebox are selected as the optimization target variable to 
achieve higher production efficiency under low NOx emission. The thermal efficiency of 
the firebox ηf is: 

 comb in out furn

comb
f

Q Q Q Q
Q

η
+ − −

=  (15) 

where Qcomb is the heat provided by the complete combustion of the fuel gas, Qin is the 
heat required for preheating air, Qout is the removed heat from high-temperature flue 
gas, Qfurn is heat loss from the surface of the furnace wall. 

4.2. DESIGN OF EXPERIMENT 

The key to building a surrogate model is to train the model using information from 
known sample points and predict unknown points. Choosing appropriate experimental 
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design methods to determine sample points is a key step in the process of constructing 
surrogate models. The experimental design based on Latin hypercube sampling (LHS) 
can balance the influence of each factor at various levels, and use non-folding design 
conditions to reduce the design space, making the samples uniform and efficient within 
a certain size range. 

According to the existing model combined with industrial production practice, the 
range of fuel gas flow rate is between 0.16 and 0.24 kg/s, the range of excess air coeffi-
cient is between 1.0 and 1.2, and the range of air preheating temperature is between 300 
and 400 K. To ensure that the design points are independent of each other and as close 
as possible to the space provided by the design variables, the LHS method is used to 
select sample points in the sample space. The turbulent combustion coupling model es-
tablished in Section 2.2 is used to perform CFD numerical simulation on the sample 
points, laying the foundation for the construction of the surrogate model in the following 
text. 

4.3. SURROGATE MODELS FOR RAPID RESPONSE TO COMBUSTION 

RBF neural networks and SVR models have excellent performance in dealing with 
nonlinear problems and are more suitable for small sample problems, especially when 
dealing with combustion problems in engineering [32, 33]. These two methods have 
been widely used, so they are used for this study. 

4.3.1. RBF NEURAL NETWORK 

The basic idea of RBF neural networks is to map the input space into a high-dimen-
sional space through a set of radial basis functions, thereby achieving classification or 
regression. 90 sample points under different operating parameters are selected based on 
the LHS method. CFD simulation is conducted using the coupled turbulence-combus-
tion model combining the EDC model with the simplified combustion reaction mecha-
nism. The sample points and calculation results are used as the total dataset. 65 sets of 
data are used to create the model, and 25 sets of data are used to test the performance. 
Each set of data in the dataset consists of five-dimensional data, including the excess air 
coefficient, fuel gas flow rate, air preheating temperature, outlet NOx concentration, and 
thermal efficiency of the firebox. 

The input variables of the RBF neural network are selected as the first three-dimensional 
parameters of each sample, and their mathematical descriptions are x = (x1, x2, x3)T. The out-
puts of the neural network y = (y1, y2, y3)T are the outlet NOx concentration and thermal effi-
ciency of the firebox. The network is set as a three-layer forward network, that is, the number 
of neurons in the input layer is 3, in the output layer – 2, and its number in the hidden layer 
is the same as the number of training samples, which is 65. To ensure the accuracy and 
generalization ability of the network model, the data samples are normalized. The structure 
of the RBF neural network based on cracking furnace combustion is shown in Fig. 7. 
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Fig. 7. Structure of the RBF neural network of cracking furnace combustion 

The hidden layer maps each low-dimensional input vector in the input space to the 
high-dimensional space through an activation function, which transforms the problem 
of low-dimensional linear inseparability into a problem of linear separability. In this 
work, the Gaussian function is selected as the activation function. After the input vec-
tor x enters the hidden layer, a radial basis transform occurs: 
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where gi is the output of the ith hidden layer neuron, ‖·‖ represents the Euclidean distance 
from the input vector to the center point, ci represents the center vector of the ith hidden 
layer neuron; σi represents the base width of the ith neuron in the hidden layer, and n is 
the number of neurons in the hidden layer. 

The mapping from the hidden layer to the output layer is linear, and the final output 
result of the network is the linear weighted sum of each neuron in the hidden layer, 
which can be expressed as: 

 ( )2
,0 , , 1, 2, 1

n

k k k i i
i

y g x c k i nω ω= + − = ≤ ≤∑  (17) 

where yk is the output of the kth neuron in the output layer, and all outputs form the 
output matrix y = [y1,  y2, …,  yn]T; ωk, 0 is the deviation value of the kth neuron in the 
output layer, ωk, i is the connection weights of the ith neuron in the hidden layer and the 
kth neuron in the output layer. 
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For RBF neural networks, the key to training is the selection of the center point of 
the basis function. This paper uses the K-means clustering algorithm to select the center 
point. In this algorithm, several sets of sample data are randomly selected as the initial 
clustering centers. Then, based on the response degree of the kernel function between 
each input sample and the clustering center, they are assigned to the corresponding range 
of clustering center points. The larger the response degree, the closer the distance is. 
Each center point and its contained samples are a cluster. During each sample allocation 
process, each cluster accountant calculates the average value of all its internal samples 
as the new cluster center point until the iteration stops. The base widths of each basis 
function at the center point can be obtained from the equation 

 max

2i
d

n
σ =    (18) 

where dmax is the maximum distance between the selected center points. 
The gradient descent method is used to train weights, and the loss function is the 

root mean square error (RMSE): 
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where ˆijy is the predicted value of the neural network, and ijy is the actual value. 
The termination target value ε is set to 0.0001. If the value of the loss function E is 

less than ε after multiple iterations, the training stops. Otherwise, the iteration continues 
until convergence is obtained. 

4.3.2. SUPPORT VECTOR REGRESSION – SVR 

SVR is a regression algorithm developed based on the support vector machines 
(SVM). SVR minimizes the total deviation of sample points from the hyperplane by 
searching for hyperplanes rather than separating sample points of different categories 
as much as possible. Due to the use of kernel functions to map low-dimensional input 
vectors into high-dimensional feature spaces, SVR can produce better prediction results 
than traditional regression algorithms when processing nonlinear data. It has also a stronger 
generalization ability. 

Specifically, if the sample set D = {(x1, y1), (x2, y2), …, (xm, ym)} is given, and the 
form of the decision surface equation is f (xi) = ω xi + b, where ωis the weight vector 
which determines the direction of the decision surface, b is the bias constant term that 
determines the position of the decision surface. Meanwhile, SVR assumes that we can 
tolerate a maximum of the error ε between model output f (xi) and actual output yi. Only 
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when the absolute value of the difference between f (xi) and yi is greater than ε is the loss 
calculated. 

Thus the SVR problem can be written as 
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where m is the number of samples, C is the regularization constant, and lε represents the 
ε-insensitive loss function. 
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where z  is the distance from the sample point to the decision surface which can be 
expressed as ( ) .i iy f x−  

To solve the problem beyond width range of the error ε, slack variables *, i iξ ξ are 
introduced. Then Eq. (20) is rewritten as: 
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Let us introduce Lagrangian multipliers *0, 0, 0, 0i iµ µ α α ∗≥ ≥ ≥ ≥  to obtain the 
following Lagrangian function: 
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There are the following equations at the optimal solution 
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By substituting Eq. (25) into Eq. (26), the original problem can be transformed into 
its dual problem: 
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By solving the above equation, the regression function can be obtained 
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For nonlinear problems, a mapping relationship φ(x) from low to high dimensions 
can be introduced to make the problem linearly separable. At the same time, a kernel 
function ( , ) ( ) ( )T

i j i jk x x x xφ φ= can be defined to achieve non-spatial transformation 
without knowing the specific form of φ(x), solving the problem of possible dimension-
ality disasters. For SVR problems that use kernel techniques, they can be expressed as: 
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To ensure sample consistency, the SVR combustion model uses the same dataset as 
the RBF neural network and normalizes the training and testing data. The SVR model 
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is established based on Matlab2019b software. For the complex combustion environ-
ment in the firebox, the influencing factors of thermal efficiency of the firebox and NOx 
emission concentration are coupled with each other, and there is a strong nonlinear re-
lationship between input and output. Therefore, a Gaussian kernel function with strong 
nonlinear mapping ability is selected as the kernel function of the SVR, which can ef-
fectively solve the determination and optimization of algorithm parameters. However, 
it is necessary to adjust the coefficient Gamma. This coefficient invisibly determines 
the distribution of the data after being mapped to the new feature space. The larger the 
Gamma, the fewer the support vectors, and the more susceptible the model is to the 
influence of individual samples, which can easily lead to a decrease in the prediction 
accuracy of the model for the test samples, resulting in overfitting problems. On the 
contrary, the smaller the gamma value, the easier it is for the model to have insufficient 
prediction accuracy for the training samples, resulting in poor fitting problems. In addi-
tion, it is necessary to adjust the penalty parameter C, which represents the acceptable 
range of error between the predicted value and the true value of the model. If the value 
of C is too large or too small, it will seriously affect the prediction accuracy and gener-
alization ability of the model. The training process of this model adopts the k-fold cross-
validation method to optimize the model parameters, where k = 5. 

4.3.3. COMPARISON OF DIFFERENT SURROGATE MODELS FOR CRACKING FURNACES 

Figures 8 and 9 show simulation effects of testing samples for NOx emission con-
centration and thermal efficiency of the firebox, respectively. The simulation results 
show that the average relative error of outlet NOx concentration of the test samples be-
tween the RBF neural network model and CFD model is 1.25%, with a maximum rela-
tive error of 3.65%. In contrast, the average relative error of outlet NOx concentration 
of the test samples between the SVR model and CFD model is 1.24%, with a maximum 
relative error of 4.3%. The average relative error of thermal efficiency of the test sam-
ples between the RBF neural network model and CFD model is 0.053%, with a maxi-
mum relative error of 0.38%.  

 

Fig. 8. Predicted NOx concentration with RBF (a) and SVR (b) models  
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Fig. 9. Predicted thermal efficiency of the firebox with RBF (a) and SVR (a) models 

By comparison, the average relative error of thermal efficiency of the test samples 
between the SVR model and CFD model is 0.15%, and the maximum relative error is 
0.68%. It can be seen that the RBF neural network model is a better choice for building 
a prediction model for the combustion characteristics of the cracking furnace compared 
to SVR model. 

To quantitatively compare the simulation performance and generalization ability of 
the RBF neural network and SRV model, mean square error (MSE), RMSE and the 
coefficient of determination (R2) are used to evaluate:  
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where 𝑦𝑦 � is the average of the true values. The closer R2 to 1, the better performance of 
the model and the closer R2 to 0, the worse performance of the model is. 

 T a b l e  4  

Indicators for the NO outlet concentration  
predicted for different models 

Model MSE RMSE R2 

RBF 1.518 1.2321 0.98808 
SVR 1.915 1.3968 0.98379 
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T a b l e  5  

Indicators for thermal efficiency  
predicted for the firebox of different models 

Model MSE RMSE R2 

RBF 0.0024 0.0489 0.99608 
SVR 0.0076 0.0869 0.98585 

 
The sample evaluation indicators for the NO outlet concentration prediction of dif-

ferent models are shown in Table 4, the sample evaluation indicators for thermal effi-
ciency prediction of the firebox of different models are shown in Table 5. The simula-
tion accuracy and R2 of the RBF neural network are better than those of the SVR model 
with better simulation and generalization capabilities. It has better targeting in terms of 
NOx outlet concentration and thermal efficiency of the firebox. Therefore, the RBF neu-
ral network is selected as the fast response surrogate model for cracking furnace com-
bustion. 

4.4. MULTI-OBJECTIVE OPTIMIZATION FOR RAPID RESPONSE TO COMBUSTION 

This study is based on the NSGA-II algorithm. The outlet NOx concentration and 
thermal efficiency of the firebox are selected as the objective functions for multi-objec-
tive optimization of cracking furnace combustion. The RBF neural network is used as 
the prediction model for furnace combustion characteristics of this optimization algo-
rithm. The multi-objective decision model can be summarized as follows: 
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where a is the excess air coefficient, q is the fuel gas flow rate, and T is the air preheating 
temperature. The range of decision variables is the same as that in Section 4.2. 

To fully explore the search space and obtain better solutions, this algorithm adopts 
real number encoding and selects a binary tournament selection operator. The simulated 
binary crossover (SBX) is used as a crossover operator, and the crossover probability is 
set to 1. The polynomial mutation is selected as the mutation operator. Due to the num-
ber of decision variables involved in this study being 3, the mutation probability is set 
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to 1/3. In the experiment, the population size is set to 100 and the maximum number of 
iterations is 500. To avoid the influence of accidental factors as much as possible, the 
NSGA-II program is run 30 times and its average value is taken, as shown in Fig. 10. 
The final result is a Pareto front composed of 38 different optimized individuals. 

 

Fig. 10. Pareto front with NSGA-Ⅱ optimization algorithm 

The outlet NOx concentration range optimized by the NSGA-II algorithm is between 
54 and 79 mg/m3, and the range of thermal efficiency of the firebox is between 44.2 and 
44.9%. In addition, it can be verified that there is a significant conflict between the 
thermal efficiency of the firebox and the outlet NOx concentration due to the ultra-low 
nitrogen combustion strategy. Due to the non-dominated feature of the NSGA-II algo-
rithm, the program does not provide the optimal operating parameters. To comprehen-
sively consider the thermal efficiency of the firebox and NOx emissions, this study se-
lects individual A located at the lower left, individual C located at the upper right, and 
individual B located between individual A and individual C for analysis and comparison 
to obtain the optimal operating scheme. The specific operating parameters are shown in 
Table 6. 

 T a b l e  6  

Operating parameters of optimized individuals A, B, and C 

Optimized 
individual 

Excess air 
coefficient 

Fuel gas  
flow rate 

[kg/s] 

Air preheating 
temperature 

[K] 

Outlet NOx  
concentration 

[mg/m3] 

Thermal efficiency 
of the firebox 

[%] 
Individual A 1.03 0.217 330 54.0 44.25 
Individual B 1.07 0.192 380 71.2 44.49 
Individual C 1.09 0.189 392 78.1 44.93 
Original scheme 1.1 0.18 325 75.38 43.82 
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For optimized individual A, although the outlet NOx is only 54.0 mg/m3, which cor-
responds 28.36% decrease compared to the original scheme, the thermal efficiency of 
the firebox is not outstanding compared to other individuals. Although the thermal effi-
ciency of the firebox of individual C reaches 44.93% which is increased by 2.53% com-
pared to the original scheme, the outlet NOx concentration reaches 78.1 mg/m3 which is 
not the best NOx emission scheme either. Therefore, considering emission reduction and 
energy conservation indicators, individual B is the most ideal individual. Compared to 
the original scheme, its NOx emission has been reduced by 5.55%, and the thermal effi-
ciency of the firebox has been improved by 1.53%. He [34] indicated that a 0.1% in-
crease in thermal efficiency can increase ethylene production by 6.2% in a naphtha- 
-cracking furnace. The thermal efficiency of the cracking furnace increases by about 
1%, which is equivalent to an energy saving of 7.143 kg of standard coal/ton of ethylene. 
Therefore, the optimized furnace thermal efficiency in this study can bring a significant 
economic benefit to ethylene manufacturing. 

5. CONCLUSION 

This paper proposed a multi-objective optimization scheme of the ultra-low nitro-
gen burners which combines CFD numerical simulation based on the simplified reaction 
mechanism with machine learning methods to establish a strong generalization-based 
turbulent combustion surrogate model. The major conclusions are described as follows: 

The EDC model is coupled with GRI 3.0 reaction kinetics, and the turbulent com-
bustion coupling model is further established for the cracking furnace. Detailed infor-
mation on the velocity, temperature, and concentration fields of flue gas is obtained, and 
the impact of combustion characteristics in the cracking furnace on NOx generation is 
analyzed. 

The DRG method is combined with the CSP method and a simplified mechanism 
involving 29 species and 164 reactions is obtained. The simplified mechanism is vali-
dated in three-dimensional numerical simulations using the Sandia Flame D. The results 
show that the simplified mechanism can achieve accurate prediction of the temperature 
field, velocity field, and concentration of each component while reducing the computa-
tional time by about 60%. 

By taking the RBF neural network as the intermediate model, the NGSA-II algo-
rithm is used to realize the multi-objective optimization of NOx emissions and thermal 
efficiency of the firebox, and a Pareto solution set that meets the expectations is ob-
tained. Simulation results show that considering NOx emission reduction and energy 
conservation indicators, the optimal operating parameter scheme, i.e., excess air coeffi-
cient of 1.07, fuel gas flow rate of 0.192 kg/s, and air preheating temperature of 380 K, 
reduces the NOx emission concentration from 75.38 to 71.2 mg/m3, i.e., a decrease of 5.55%. 
The thermal efficiency of the firebox increased from 43.82% to 44.49%, i.e., an increase of 
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1.53%, which provides a theoretical guide for the economic and environmental protection 
operation of cracking furnaces. 

For future work, the reactor tubes of the ethylene cracking furnace will be consid-
ered. A high-fidelity turbulent combustion coupling model will be constructed to meet 
the requirements of NOx emissions and industrial equipment heat load. This can broaden 
the selection range of decision variables and change the optimization objective to the 
overall furnace thermal efficiency rather than the thermal efficiency of the firebox. 
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