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A COMPARISON OF THE STATISTICAL DISTRIBUTIONS 
OF AIR POLLUTION CONCENTRATIONS IN SINOP, TURKEY 

The increasing population and industrialization are the reasons for environmental and air pollution 
around the world. Air pollution is a major threat, especially to human health, both biological and eco-
nomic. Therefore, determining the properties of air pollutants is very important for researchers and 
practitioners working in this field. In this study, the statistical distributions of some air pollutants are 
determined using the Gumbel, Weibull, generalized Pareto, log-normal, gamma, Rayleigh, and inverse 
Weibull distributions. The data was obtained from stations Boyabat and Merkez stations in Sinop prov-
ince in 2017. The Kolmogorov–Smirnov test was used to determine the underlying distributions of the 
air pollution data. Then we use the root mean square error and coefficient of determination criteria to 
determine which distribution better fits the air pollution data. Finally, numerical results have shown 
that the generalized Pareto distribution demonstrates the best overall modeling performance, followed 
by log-normal and inverse Weibull distributions. 

1. INTRODUCTION 

Air pollution is a problem that threatens human health as well as the ecosystem, 
accumulating with dense urbanization, inappropriate settlement of cities, the increase in 
the number of motor vehicles, irregular industrialization, and poor quality fuel use. Min-
ing activities, agriculture, residences, transportation, industrial emissions, and other 
sources can all be classified as the main sources of air pollution. Much of the air pollu-
tion in Turkey comes from the production and use of energy for transport and home 
heating, among other things [11]. Furthermore, the phenomenon of air pollution fre-
quently occurs during the winter season as a result of inversion conditions that restrict 
the dispersion of pollutants due to low wind speeds, low mixing heights, and tempera-
ture inversions [7]. The scientific community and relevant authorities monitor and ana-
lyze their concentrations to determine strategies and solve air pollution problems. The 
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air quality index classification system, widely used all over the world, classifies air quality 
as good, moderate, bad, or dangerous according to the concentration of pollutants in the 
air. The methods and criteria used to calculate the index in many countries around the 
world have been determined according to the air quality standards of the relevant coun-
tries. The national air quality index was created as a result of adapting the US-EPA 
(Environmental Protection Agency) air quality index to our national legislation and limit 
values. The air quality index is calculated for five main pollutants. These are particulate 
matter (PM) smaller than about 10 µm (PM10), carbon monoxide (CO), sulfur dioxide 
(SO2), nitrogen dioxide (NO2), and ozone (O3). 

Mining activities, agriculture, residences, transportation, industrial emissions, and 
other sources can all be classified as the main sources of air pollution. Much of the air 
pollution in Turkey comes from the production and use of energy for transport and home 
heating, among other things [11]. 

The simplest way to reduce air pollution is to tackle the underlying cause. There are 
numerous intermediate options to reduce air pollution in the short term. Only a few of 
the solutions that can be implemented are the transition to electric vehicles, the use of 
cleaner fuel standards, and the use of renewable energy sources. However, to be effec-
tive in any of these measures, governments must acknowledge the effects of air pollu-
tion on human health and the economy and take appropriate action [11]. 

On the other hand, in epidemiological surveillance, the average concentration of air 
pollutants has been used as an indicator of the degree of atmospheric pollution and its 
negative impact on human diseases such as chronic bronchitis [13]. For this reason, the 
statistical distributions of air pollutants have become very important in air pollution 
studies since it can easily be estimated how many times exceeding air quality standards 
are exceeded [14]. The distribution often used to model air pollutant concentration is 
log-normal [8, 10, 14, 15, 18, 19, 21, 22]. However, the level of air pollution varies 
depending on factors such as the source of pollution and the local meteorology and to-
pography. Therefore, the actual distribution of the atmospheric pollutants does not al-
ways correspond to the log-normal one, especially at higher levels of pollution levels 
[13]. In recent years, various statistical distribution models have been evaluated to meet 
the objectives of urban air quality management. Therefore, many statistical distributions 
have been widely used to organize and efficiently describe air pollutant concentrations, 
including extreme and average concentrations, such as the Weibull distribution [8, 10, 
19, 27], the gamma distribution [23], and the log-logistic distribution [6]. 

Furthermore, in the related literature, there are a considerable number of studies that 
determine the characteristics of air pollutants that cause air pollution using statistical 
distributions. Noor et al. [16] used to model PM10 concentration in industrialized areas 
in Malaysia uLusing the log-normal distribution for 2006 and the gamma distribution for 
2007. El-Shanshoury [4] fitted the Frechet distribution known as the inverse Weibull distri-
bution to the model PM10 concentration in Ain Sokhna, Egypt, for 2014. Gavriil et al. [5] 
conducted the study for two separate years, and the results indicated that Pearson type 
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VI provided a better fit to PM10. Kan et al. [10] determined the most appropriate distri-
butions for PM10, SO2, and NO2 concentrations in Shanghai as log-normal, Pearson V, 
and extreme values, respectively. Lu [14] found that the theoretical distribution that 
represents the daily average concentration of PM10 at the Sha-Lu station in Taiwan 
from 1995 to 1999 is log normal. Lu [15] concluded that the Weibull and log-normal 
distributions are more suitable for the daily average concentration of the SO2 distribu-
tion at three stations in Taiwan from 1998 to 1999. Leiva et al. [13] showed that the 
skewed sinh-normal distribution is more suitable for modeling the hourly SO2 concen-
tration observed at a monitoring station in Santiago in March 2002. Souza et al. [26] 
claimed that the Rician distribution is more suitable for modeling the average hourly 
NO concentration from one year to 2015. Gulia et al. [7] indicated that NO2 concentra-
tion is best fitted with log-normal and log-logistic distribution models, respectively, for 
the winter and summer seasons of 2010 in Delhi. Oguntunde et al. [17] determined that 
gamma was the best distribution to fit the CO concentration in Lagos state, Nigeria, 
between 2004 and 2010. Ott et al. [18] demonstrated that the frequency distribution of 
CO data in US cities can be fitted well with a log-normal distribution. Prieto et al. [20] 
indicated that the Gumbel distribution is the most appropriate for the annual concentra-
tions of NOx obtained from 2010 to 2015 in Sao Paulo. 

Comparing the modeling performances of the Gumbel, Weibull, log-normal, gen-
eralized Pareto, gamma, Rayleigh, and inverse Weibull distributions to determine the 
characteristics of air pollutants is the aim of this study. These distributions were selected 
because they are plausible alternatives to the well-known log-normal distribution, which 
is often used in research on air pollution. For this purpose, hourly data on air pollutants 
from two monitoring stations from January to March 2017 were analyzed to determine 
the distributional properties of air pollution. Air pollutants are measured at the following 
stations: PM10, SO2, NO, NO2, NOx, and CO at the Boyabat station and PM10 and SO2 
at the Merkez station. 

The rest of the study is organized as follows. Section 2 of the paper describes the 
probability density functions that have been used in the specialized literature on model-
ing air pollution and other natural phenomena. Air pollution data from the study is in-
troduced in Section 3. The results of the statistical analysis are reported in Section 4. 
Finally, our conclusions obtained from the study are given in Section 5. 

2. METHODS 

This section of the article briefly describes the probability distributions used in mod-
eling the air pollutants that cause air pollution in this study. Next, the probability density 
function (pdfs) of all considered distributions for some selected parameter values are 
displayed in Fig. 1. Almost all of the distributions used in this study are right-skewed, 
although the Weibull distribution is left-skewed for some shape parameter values. 
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Fig. 1. pdf plots of selected distributions  

for selected values of the parameters 
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2.1. GUMBEL DISTRIBUTION 

Let X be a random variable; the two-parameter Gumbel distribution probability 
density function (pdf) and cumulative density function (cdf) are given as 

( ) 1 exp ,
exp

xf x x
x

θ
θδ δ

δ

− = − ∈ −  + −    

  

and 

( ) exp exp xF x θ
δ

 − = − −    
 

θ ∈  is the location parameter, and δ  > 0 the scale parameter. The expected value E(X), 
variance Var(X), skewness β1, and kurtosis of β1 X are: 

( )E X θ δγ= +  

( )
2

2πVar
6

X δ=  

1 21.14, 5.40β β= =  

γ is the Euler’s constant, which has an approximate value of 0.5772. 

2.2. WEIBULL DISTRIBUTION 

Let X denote a random variable having a Weibull distribution with the shape pa-
rameter k and scale parameter δ. pdf and cdf of X are given by 

( )
1

exp , 0,
k kk x kf x x δ

δ δ δ

−
   = − > > 0   
   

 

and 

( ) 1 exp
kxF x

δ
 = − − 
 

 

Basic characteristics of the Weibull distribution, such as the mean, variance, skew-
ness and kurtosis are as follows: 
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( ) 11E X
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 
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k k

δ Γ Γ
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where 

( ) ( )( )1/2
, VarX Xµ Ε σ= =  

The expected values used in the above-mentioned skewness and kurtosis values can 
be easily calculated using the following general formula: 

( ) 1 , 1, 2, ...r r rE X r
k

δ Γ  = + = 
 

 

2.3. GENERALIZED PARETO DISTRIBUTION 

Let 𝑋𝑋 be a random variable that has a generalized Pareto distribution with location 
parameter 𝜃𝜃, scale parameter 𝛿𝛿, and shape parameter 𝑘𝑘. The pdf and cdf of 𝑋𝑋 are given by 

( )
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The domains of X depend on the shape parameter k and are given as 

, 0

, 0

x k

x k
k

θ
δθ θ

≤ ≤ ∞ ≠



≤ ≤ − =

 

The mean, variance, skewness and kurtosis of X are: 

( ) , 1
1

E X k
k

δθ= + <
−
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( )( )

2

2

1Var ,
21 2 1

X k
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δ
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2.4. LOG-NORMAL DISTRIBUTION 

Let X denote a random variable; the pdf and cdf of log-normal distribution with 
location parameter θ ∈  and scale parameter δ  > 0 are given by 

( )
( )

( )2

1/2 2

1 lnexp , 0, ,
22π
xf x x

x
θ θ δ

δδ

 −
= − > ∈ > 0 

 
  

and 

( ) ln xF x θΦ
δ
− =  

 
 

Basic characteristics of the log-normal distribution are: 

( ) 21exp
2

E X θ δ = + 
 

 

( ) ( )( ) ( )2 2Var exp 2 exp 2X θ δ θ δ= + − +  

( )( ) ( )( )1/22 2
1 2 exp exp 1β δ δ= + −  

( ) ( ) ( )2 2 2
2 exp 4 2exp 3 3exp 2 6β δ δ δ= + + −  
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2.5. GAMMA DISTRIBUTION 

Let X be a random variable having gamma distribution and the pdf and cdf of X are 

( )
( )

exp
, 0,

xx
f x x

α

α

β
α β

β Γ α

−1  − 
 = > > 0, > 0  

and 

( )
( )

, x

F x
γ α

β
Γ α

 
 
 =  

where α is the shape parameter, β is the scale parameter, and γ is  

( ) 1

0

, e
x

a ua x u duγ − −= ∫  

The following formulas are used to obtain the distributional characteristics of 
gamma distribution: 

( ) ( ) 2VarE X Xαβ αβ= , =  

1 21/2

2 6, 3β β
α α

= = +  

2.6. RAYLEIGH DISTRIBUTION 

Let X be a random variable with the pdf 

( )
2

2 2exp , 0
2

x xf x x
σ σ

 
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 
 

and cdf 

( )
2

21 exp
2
xF x
σ

 
= − − 

 
 

where σ > 0 is the scale parameter. The mean, variance, skewness, and kurtosis of X 
having Rayleigh distribution are given by 
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( )
1/2π
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2.7. INVERSE WEIBULL DISTRIBUTION 

Let X denote a random variable that has an inverse Weibull distribution with pdf 
and cdf given by 

( ) ( ) ( )1 exp , 0,k kf x kx x xδ δ δ κ− + −= − > > 0, > 0  

and 

( ) ( )exp kF x xδ −= −  

where k is the shape parameter and δ the scale parameter. To obtain the basic character-
istics of the inverse Weibull distribution, the mean, variance, skewness, and kurtosis 
of X are: 
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k
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σ σ
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where µ = E(X) and σ = (Var(X))1/2. The expected values used in the skewness and 
kurtosis can be easily calculated using the following general equation: 

( ) / 1 ,r r k rE X k r
k

δ Γ  = − > 
 
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2.8. LEAST SQUARES ESTIMATION 

The least squares (LS) method [25] is widely used in the statistical estimation process 
due to its easy applicability. Let {X1, X2, …, Xn} be a random sample of size n from a distri-
bution having a pdf f(xi |θ) where θ is an unknown parameter. Let X(i), i =1, 2, …, n be the 
ith order statistics obtained by arranging. Let X(i), i = 1, 2, …, n in ascending order of mag-
nitude (i.e., X(1) < X(2) < … X(n) and x(i), i =1, 2, …, n ordered observations corresponding to 
X(i). The LS estimator of the parameter θ is obtained by minimizing the following function: 

( ) ( )( )2
( )

1

n

i i
i

G F x pθ
=

= −∑  

where pi is the estimate of ( )( )iF x , which is generally taken to be pi = i/(n + 1) [9, 12]. 

2.9. KOLMOGOROV–SMIRNOV TEST 

Goodness-of-fit tests are used to assess how well a proposed model fits a particular 
data set. Furthermore, test statistics are usually based on the deviations between the data 
and the observed predictions of the model. In this context, many tests, such as the chi-
square test and the Kolmogorov–Smirnov test, have been suggested in the literature for 
goodness of fit. In this study, the Kolmogorov–Smirnov test (K-S) was applied to verify 
that the data were taken from a particular distribution. Let Fn(x) be the cdf of a random 
sample {X1, X2, …, Xn}  of size n and S(x) be the empirical cdf of the {X1, X2, …, Xn}. 
Accordingly, the K-S test statistic is defined as: 

( ) ( )max nx
KS S x F x= −  

2.10. MODEL EVALUATING TEST 

Many criteria are used to compare the data modeling performance of a proposed 
distribution or to determine the best fit to the data from among the assumed probability 
distributions. Among these, the most commonly used criteria are Akaike information, 
Bayes information, the root mean square error (RMSE), and the coefficient of determi-
nation (R2) [1, 3, 24]. In this study, RMSE and R2, which are widely preferred, are used 
to determine the best modeling distribution of the air pollution data among the supposed 
distributions. For calculations, the following formulas are used: 

( )
1/22

( )
1

1 ˆRMSE = 
n

i i
i

F x p
n =

 
− 

 
∑  
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and 

( )( )
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2 1

2
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ˆ
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ˆ

n

i i
i

n

ii
i

F x p
R

F x F x

=

=

−
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−

∑

∑ 

 

where ( )( )
ˆ

iF x  is the estimate of ( )( ) ,iF x  ( )( )iF x  is the mean of ( )( )
ˆ

iF x  and  

1

1 ˆ
n

i
F F

n =

= ∑

 

3. AIR POLLUTANT DATA 

Sinop is situated at the northern edge of the Turkish side of the Black Sea coast. It 
is located at 42°01״44׳ north latitude and 35°09״19׳ east longitude. Its surface area is 
5.862 km2, and its borders are 475 km in total, 300 km of which are land and 175 km 
are seaside. From the national air quality and monitoring network, we selected two sta-
tions at Merkez (city center) and Boyabat, the only stations in the Sinop region for which 
measurement data are available for 2017. Figure 2 shows where the selected stations are 
located on a map of Turkey. The monitoring data sets in the two stations were recorded 
from the official website of the Ministry of Environment and Urbanization of the Re-
public of Turkey (https://www.csb.gov.tr). 

 

Fig. 2. Geographic location of Merkez and the Boyabat stations in Sinop, Turkey 

https://www.csb.gov.tr/
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We have characterized the distributions of two pollutants recorded in Merkez, PM10 
and SO2, and the distributions of six pollutants recorded in Boyabat, PM10, SO2, NO, NO2, 
NOx, and CO. We provided the study with all hourly concentrations of the pollutants from 
1 January 2017 to 31 March 2017. Some descriptive statistics have been calculated to sum-
marize the data and provide preliminary information about the data. The descriptive statis-
tics used in this study are the mean, standard deviation (SD), maximum value (Max), range, 
skewness (𝛽𝛽1), kurtosis (𝛽𝛽2), and the percentage of available data (Data [%]). The calculated 
values for the data set are given in Table 1 for each month and each station. 

T a b l e  1  

Some descriptive statistics on air pollutants at Merkez and Boyabat 

Station Month Pollutant Mean SD Max Range β1 β2 n Data 
[%] 

Merkez 

Jan PM10 53 42.5 472 463 3.75 25.01 712 99 
SO2 18 21.9 165 165 2.66 12.06 669 93 

Feb PM10 66 55 588 577 3.79 25.31 487 75 
SO2 22 24 186 183 2.27 10.20 649 100 

Mar PM10 52 32.2 259 248 2.33 10.80 716 99 
SO2 15 14.2 139 135 3.79 24.11 717 99 

Boyabat 

Jan 

PM10 97 66.1 668 660 2.10 12.13 717 99 
SO2 48 47.7 319 313 2.91 13.00 718 100 
NO 32 44.3 330 330 3.12 15.40 718 100 
NO2 56 29.3 203 193 0.80 3.74 718 100 
NOx 88 67.1 410 400 1.89 7.13 718 100 
CO 1325 1111.6 7431 7427 1.71 6.89 715 99 

Feb 

PM10 92.72 56.5 297 288 1.00 3.49 648 100 
SO2 48.64 49.8 384 381 2.45 10.72 648 100 
NO 28.78 44.2 335 335 2.96 14.36 648 100 
NO2 57 29 139 130 0.59 2.52 648 100 
NOx 85 65.1 442 432 1.56 5.89 648 100 
CO 1269 1117.6 5625 5618 1.20 3.96 645 99 

Mar 

PM10 76.12 48.1 227 219 0.91 3.18 616 85 
SO2 34.84 50.4 533 532 4.68 35.09 716 99 
NO 13.58 25.3 241 241 4.46 30.70 685 95 
NO2 43.25 25.4 137 132 0.76 2.90 685 95 
NOx 56.86 45.2 311 306 1.85 7.96 685 95 
CO 848.70 735.3 4122 4122 1.22 4.54 704 98 

 
For the Merkez station, the average concentrations of both pollutants, PM10 and 

SO2, are the highest in February (see Table 2). PM10 in February has the highest range 
value (which is the difference between the highest and lowest values for a given set of 
data). The maximum, that is, the highest observation value, is PM10 recorded in Febru-
ary at 588 mg/m3. Furthermore, the largest standard deviations of PM10 and SO2 con-
centrations (55 and 24 mg/m3, respectively) are observed in February. The smallest 
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range values for PM10 and SO2 concentrations (248 and 135 mg/m3, respectively) in 
Merkez and almost all pollutant concentrations are obtained in March. 

 
In the Boyabat station, the highest average concentrations of PM10, NO, NOx, and 

CO (97, 32, 88, and 1325 mg/m3, respectively) were observed in January. The highest 
average concentrations of SO2 and NO2 (48.64 and 57 mg/m3, respectively) were ob-
served at the same station in February. Boyabat has the smallest SD values for PM10, 
NO, NO2, NOx, and CO concentrations (48.1, 25.3, 25.4, 45.2, and 735.3 mg/m3, re-
spectively) in March. Except for NO2 in three months and PM10 in March at the station, 
the skewness values for all air pollutants are greater than one. In terms of kurtosis, all 
but NO2 in February and March are larger than three. Therefore, the distribution of air 
pollutants is leptokurtic with heavy tails, as observations of air pollutants with a kurtosis 
higher than three have extreme values on their tails. On the contrary, air pollutants with 

T a b l e  2  

Parameter estimates of the statistical distributions of PM10 and SO2 for the Merkez station 

Month Gumbel Weibull Generalized 
Pareto 

Log- 
-normal Gamma Rayleigh Inverse 

Weibull 
PM10 

Jan θ̂ = 35.55 
δ̂ = 18.96 
 

k̂ = 1.53 
δ̂ = 56.83 

α̂ = 0.01 
β̂ = 29.64 

θ̂ = 20.43 

θ̂ = 3.73 
δ̂ = 0.53 
 

α̂ = 3.76 
β̂ = 12.39 

σ̂ = 36.76 k̂ = 2017.40 
δ̂ = 2.15 

Feb θ̂ = 43.19 
δ̂ = 23.46 
 

k̂ = 1.49 
δ̂ = 69.73 

α̂ = –0.02 
β̂ = 38.53 

θ̂ = 23.72 

θ̂ = 3.93 
δ̂ = 0.54 
 

α̂ = 3.67 
β̂ = 15.50 

σ̂ = 44.73 k̂ = 2413.40 
δ̂ = 2.08 

Mar θ̂ = 37.80 
δ̂ = 18.17 
 

k̂ = 1.88 
δ̂ = 56.54 

α̂ = –0.14 
β̂ = 33.02 

θ̂ = 21.80 

θ̂ = 3.78 
δ̂ = 0.49 
 

α̂ = 4.51 
β̂ = 10.66 

σ̂ = 38.48 k̂ = 4708.50 
δ̂ = 2.34 

SO2 

Jan θ̂ = 7.56 
δ̂ = 8.92 
 

k̂ = 7.56 
δ̂ = 8.92 

α̂ = 0.69 
β̂ = 8.06 

θ̂ = 2.09 

θ̂ = 2.27 
δ̂ = 1.11 
 

α̂ = 1.04 
β̂ = 14.10 

σ̂ = 8.39 k̂ = 7.17 
δ̂ = 1.05 

Feb θ̂ = 9.99 
δ̂ = 13.04 
 

k̂ = 1.00 
δ̂ = 20.33 

α̂ = 0.71 
β̂ = 10.77 

θ̂ = 2.19 

θ̂ = 2.52 
δ̂ = 1.17 
 

α̂ = 0.97 
β̂ = 20.53 

σ̂ = 11.52 k̂ = 7.59 
δ̂ = 0.98 

Mar θ̂ = 9.34 
δ̂ = 5.25 
 

k̂ = 1.42 
δ̂ = 15.78 

α̂ = 0.44 
β̂ = 5.97 

θ̂ = 5.69 

θ̂ = 2.41 
δ̂ = 0.57 
 

α̂ = 3.37 
β̂ = 3.70 

σ̂ = 9.76 k̂ = 84.44 
δ̂ = 2.02 
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a kurtosis coefficient lowerthan three, that is, NO2 in February and March, have a platy- 
kurtic distribution with lighter and shorter tails with fewer outliers. 

To compare the modeling performances of the distributions, we first obtain the LS es-
timates of the parameters of interest for the air pollution data. The estimated values of the 
parameters that are used in subsequent analyzes are presented in Tables 2 and 3. 

 
T a b l e  3  

Parameter estimates of statistical distributions  
of PM10, SO2, NO, NO2, NOx and CO at the Boyabat station 

Month Gumbel Weibull Generalized 
Pareto 

Log- 
-normal Gamma Rayleigh Inverse 

Weibull 
PM10 

Jan θ̂ = 66.28 
δ̂ = 45.52 
 

k̂ = 1.64 
δ̂ = 106.09 

α̂ = –0.19 
β̂ = 82.79 

θ̂ = 26.84 

θ̂ = 4.38 
δ̂ = 0.66 
 

α̂ = 2.53 
β̂ = 7.271.48 

σ̂ = 71.48 k̂ = 1.73 
δ̂ = 1294.30 

Feb θ̂ = 66.40 
δ̂ = 44.03 
 

k̂ = 1.76 
δ̂ = 101.64 

α̂ = –0.16 
β̂ = 77.76 

θ̂ = 27.23 

θ̂ = 4.35 
δ̂ = 0.65 
 

α̂ = 2.54 
β̂ = 36.02 

σ̂ = 69.25 k̂ = 1.78 
δ̂ = 1530.90 

Mar θ̂ = 51.98 
δ̂ = 38.78 
 

k̂ = 1.73 
δ̂  = 82.98 

α̂ = –0.25 
β̂ = 74.24 

θ̂ = 17.44 

θ̂ = 4.15 
δ̂ = 0.70 
 

α̂ = 2.22 
β̂ = 34.36 

σ̂ = 1.64 k̂ = 607.55 
δ̂ = 1.64 

SO2 
Jan θ̂ = 26.96 

δ̂ = 18.06 
 

k̂ = 1.25 
δ̂ = 47.89 

α̂ = 0.17 
β̂ = 26.53 

θ̂ = 12.52 

θ̂ = 3.49 
δ̂ = 0.68 
 

α̂ = 2.53 
β̂ = 15.15 

σ̂ = 28.70 k̂ = 43.34 
δ̂ = 1.20 

Feb θ̂ = 25.82 
δ̂ = 25.16 
 

k̂ = 1.16 
δ̂ = 47.84 

α̂ = 0.02 
β̂ = 40.45 

θ̂ = 4.76 

θ̂ = 3.47 
δ̂ = 0.94 
 

α̂ = 1.39 
β̂ = 31.28 

σ̂ = 29.65 k̂ = 43.34 
δ̂ = 1.20 

Mar θ̂ = 15.47 
δ̂ = 15.73 
 

k̂ = 0.99 
δ̂ = 30.89 

α̂ = 0.26 
β̂ = 21.21 

θ̂ = 3.33 

θ̂ = 2.97 
δ̂ = 1.00 
 

α̂ = 1.30 
β̂ = 20.71 

σ̂ = 17.97 k̂ = 18.41 
δ̂ = 1.12 

NO 
Jan θ̂ = 12.06 

δ̂ = 18.42 
 

k̂ = 12.00 
δ̂ = 18.42 

α̂ = 0.63 
β̂ = 16.90 

θ̂ = 0.47 

θ̂ = 2.70 
δ̂ = 1.41 
 

α̂ = 0.74 
β̂ = 37.18 

σ̂ = 14.51 k̂ = 5.68 
δ̂ = 0.80 

Feb θ̂ = 8.32 
δ̂ = 14.93 
 

k̂ = 0.77 
δ̂ = 4.42 

α̂ = 1.06 
β̂ = 9.73 

θ̂ = 0.30 

θ̂ = 0.77 
δ̂ = 4.42 
 

α̂ = 1.06 
β̂  = 9.73 

σ̂ = 8.83 k̂ = 3.48 
δ̂ = 0.71 



 Statistical distributions of air pollution concentrations in Sinop, Turkey 61 

T a b l e  3  

Parameter estimates of statistical distributions  
of PM10, SO2, NO, NO2, NOx and CO at the Boyabat station 

Mar θ̂ = 3.34 
δ̂ = 6.44 
 

k̂ = 0.76 
δ̂ = 2.31 

α̂ = –26.86 
β̂ = 25.19 

θ̂ = 3.06 

θ̂ = 0.76 
δ̂ = 2.31 
 

α̂ = 0.46 
β̂ = 24.03 

σ̂ = 4.05 k̂ = 1.66 
δ̂ = 0.65 

NO2 

Jan 
θ̂ = 66.28 
δ̂ = 45.52 
 

k̂ = 1.64 
δ̂ = 106.09 

α̂ = –0.19 
β̂ = 82.79 

θ̂ = 26.84 

θ̂ = 4.38 
δ̂ = 0.66 
 

α̂ = 2.53 
β̂ = 37.21 

σ̂ = 71.48 k̂ = 12.9430 
δ̂ = 1.73 

Feb 
θ̂ = 42.35 
δ̂ = 26.15  
 

k̂ = 2.14 
δ̂ = 63.00 

α̂ = –0.50 
β̂ = 60.91 

θ̂ = 16.17 

θ̂ = 3.92 
δ̂ = 0.59 
 

α̂ = 3.05 
β̂  = 18.90 

σ̂ = 44.81 k̂ = 1130.00 
δ̂ = 1.90 

Mar 
θ̂ = 30.43 
δ̂ = 22.18 
 

k̂ = 1.81 
δ̂ = 47.79 

α̂ = –0.37 
β̂ = 46.62 

θ̂ = 9.54 

θ̂ = 3.60 
δ̂ = 0.69 
 

α̂ = 2.32 
β̂ = 18.97 

σ̂ = 33.37 k̂ = 222.69 
δ̂ = 1.62 

NOx 

Jan θ̂ = 55.65 
δ̂ = 45.53 
 

k̂ = 1.48 
δ̂ = 93.25 

α̂ = –0.15 
β̂ = 80.93 

θ̂ = 16.31 

θ̂ = 4.22 
δ̂ = 0.78 
 

α̂ = 1.91 
β̂ = 44.43 

σ̂ = 62.29 k̂ = 295.43 
δ̂ = 1.45 

Feb θ̂ = 52.54 
δ̂ = 43.77 

k̂ = 1.45 
δ̂ = 90.22 

α̂ = 0.08 
β̂ = 64.58 

θ̂ = 18.41  

θ̂ = 4.17 
δ̂ = 0.79 
 

α̂ = 1.83 
β̂ = 44.64 

σ̂ = 57.75 k̂ = 281.38 
δ̂ = 1.45 

Mar θ̂ = 34.72 
δ̂ = 30.12 
 

k̂ = 1.40 
δ̂ = 60.02 

α̂ = –0.01 
β̂ = 47.50 

θ̂ = 10.33 

θ̂ = 3.75 
δ̂ = 0.82 
 

α̂ = 1.73 
β̂ = 31.63 

σ̂ = 38.75 k̂ = 119.36 
δ̂ = 1.38 

CO 
Jan θ̂ = 785.82 

δ̂ = 734.42 
 

k̂ = 1.26 
δ̂ = 1398.30 

α̂ = –0.10 
β̂ = 1273.70 

θ̂ = 158.87 

θ̂ = 6.89 
δ̂ = 0.88 
 

α̂ = 1.53 
β̂ = 841.40 

σ̂ = 898.39 k̂ = 5710.30 
δ̂ = 1.31 

Feb θ̂ = 694.39 
δ̂ = 829.75 
 

k̂ = 1.12  
δ̂ = 1300.70 

α̂ = 0.00 
β̂ = 1288.90 

θ̂ = 27.07  

θ̂ = 6.76 
δ̂ = 1.11 
 

α̂ = 1.05 
β̂ = 1243.40 

σ̂ = 847.61 k̂ = 677.66 
δ̂ = 1.02 

Mar θ̂ = 483.93 
δ̂ = 569.04 

k̂ = 483.93 
δ̂ = 569.04 

α̂ = –0.25 
β̂ = 1100.30  

θ̂ = –33.81 

θ̂ = 6.41 
δ̂ = 1.08 
 

α̂ = 1.06 
β̂ = 854.05 

σ̂ = 608.82 k̂ = 692.91 
δ̂ = 1.08 



62 D. AYDIN 

The Kolmogorov–Smirnov test is used to determine whether the data are suitable 
for the assumed distributions and RMSE and R2 criteria to determine which distribution 
fits the data better. The results are presented in Tables 4 and 5. In the evaluation of the 
results of the K-S test, hypothesis H0 is established as follows: H0: The air pollutants are 
the assumed distribution and cannot be rejected if the calculated K-S value is less than the 
table K-S value (K-St). In other words, the distribution of air pollution data will be the as-
sumed distribution in hypothesis H0. It should be noted that the K-S values are compa- 
red with K-St = 1.36/(n)1/2 values. Here, both the smallest RMSE and the highest R2 in  
Tables 4 and 5 are in bold to show which distribution provides a better fit to the data. 

 
T a b l e  4  

K-S, RMSE, and R2 for PM10 and SO2 at the Merkez station 

Distribution January February March 
K-S RMSE R2 K-S RMSE R2 K-S RMSE R2 

PM10 
Gumbel 0.0560 0.0318 0.9882 0.0565 0.0302 0.9894 0.0505 0.0244 0.9931 
Weibull 0.1181 0.0318 0.9202 0.1202 0.0691 0.9176 0.0890 0.0536 0.9569 
Generalized Pareto 0.0702 0.0183 0.9961 0.0607 0.0175 0.9964 0.0627 0.0203 0.9952 
Log-normal 0.0447 0.0210 0.9948 0.0432 0.0190 0.9957 0.0322 0.0163 0.9969 
Gamma 0.0555 0.0316 0.9882 0.0581 0.0296 0.9897 0.0540 0.0265 0.9917 
Rayleigh 0.0747 0.0430 0.9764 0.0715 0.0405 0.9795 0.0840 0.0461 0.9702 
Inverse Weibull 0.0323 0.0110 0.9986 0.0249 0.0113 0.9985 0.0387 0.0137 0.9978 

SO2 
Gumbel 0.1037 0.0660 0.9513 0.1808 0.0686 0.9448 0.0973 0.0577 0.9622 
Weibull 0.4108 0.2326 0.7467 0.1357 0.0481 0.9720 0.1480 0.0833 0.8845 
Generalized Pareto 0.0628 0.0207 0.9949 0.0701 0.0300 0.9888 0.0722 0.0259 0.9919 
Log-normal 0.0522 0.0261 0.9917 0.1111 0.0348 0.9847 0.0895 0.0472 0.9733 
Gamma 0.0700 0.0438 0.9771 0.1446 0.0472 0.9724 0.0911 0.0568 0.9623 
Rayleigh 0.2142 0.1155 0.9059 0.2085 0.1351 0.8808 0.0952 0.0649 0.9502 
Inverse Weibull 0.0585 0.0216 0.9943 0.0754 0.0348 0.9845 0.0879 0.0317 0.9878 

 
Table 4 indicates that the distribution of PM10 in January is log-normal and inverse 

Weibull according to the test rule. However, the calculated values of the RMSE and R2 
criteria in Table 4 are examined to determine which distribution provides a better fit to 
the data than the others, that is, log-normal or inverse Weibull. The RMSE and R2 are 
the most useful fit comparison measures. Low RMSE values and high R2 values indicate 
a better fit of the assumed distribution. Table 4 presents the results of the goodness of 
fit test conducted on the pollution data obtained at the Merkez station. The inverse 
Weibull distribution is more suitable than the others for PM10 concentration data in 
January–March, and the distribution log-normal for SO2 data in January. However, since 
hypothesis H0 is rejected, the distribution of SO2 data in February and March could not 
be modeled using one of the distributions discussed in this study. 
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T a b l e  5  

K-S, RMSE, and R2 for pollutants PM10, SO2, NO, NO2, NOx, and CO at the Boyabat station 

Distribution Jan Feb Mar 
K-S RMSE R2 K-S RMSE R2 K-S RMSE R2 

PM10 
Gumbel 0.0501 0.0257 0.9920 0.0426 0.0256 0.9922 0.0447 0.0220 0.9942 
Weibull 0.0596 0.0285 0.9894 0.0523 0.0286 0.9902 0.0528 0.0251 0.9930 
Generalized Pareto 0.0484 0.0125 0.9981 0.0648 0.0154 0.9972 0.0584 0.0150 0.9973 
Log-normal 0.0278 0.0117 0.9983 0.0319 0.0113 0.9985 0.0380 0.0130 0.9979 
Gamma 0.0371 0.0188 0.9957 0.0344 0.0191 0.9956 0.0322 0.0131 0.9979 
Rayleigh 0.0579 0.0380 0.9849 0.0780 0.0388 0.9843 0.0822 0.0443 0.9809 
Inverse Weibull 0.0600 0.0262 0.9916 0.0713 0.0254 0.9922 0.0784 0.0326 0.9873 

SO2 
Gumbel 0.0905 0.0391 0.9829 0.0840 0.0357 0.9853 0.0865 0.0442 0.9778 
Weibull 0.1048 0.0649 0.9331 0.0387 0.0230 0.9933 0.0693 0.0404 0.9770 
Generalized Pareto 0.0585 0.0199 0.9954 0.0344 0.0116 0.9984 0.0286 0.0123 0.9982 
Log-normal 0.0601 0.0213 0.9947 0.0269 0.0095 0.9989 0.0253 0.0121 0.9982 
Gamma 0.0862 0.0344 0.9864 0.0369 0.0168 0.9967 0.0603 0.0264 0.9918 
Rayleigh 0.1204 0.0482 0.9763 0.1493 0.0820 0.9470 0.1463 0.0919 0.9357 
Inv. Weibull 0.0309 0.0128 0.9980 0.0666 0.0317 0.9879 0.0490 0.0241 0.9929 

NO 
Gumbel 0.1459 0.0639 0.9525 0.1745 0.0863 0.9181 0.1862 0.0809 0.9288 
Weibull 0.4657 0.2700 0.6913 0.4759 0.2694 0.6773 0.3824 0.2206 0.7603 
Generalized Pareto 0.0374 0.0171 0.9964 0.0464 0.0205 0.9949 0.4569 0.2676 0.6977 
Log-normal 0.0368 0.0165 0.9967 0.0384 0.0195 0.9954 0.1591 0.0420 0.9811 
Gamma 0.0498 0.0266 0.9913 0.0660 0.0410 0.9797 0.1591 0.0455 0.9783 
Rayleigh 0.2393 0.1506 0.8637 0.2966 0.1593 0.8516 0.2754 0.1711 0.8371 
Inv. Weibull 0.0714 0.0331 0.9864 0.0821 0.0274 0.9909 0.1591 0.0490 0.9734 

NO2 
Gumbel 0.0354 0.0144 0.9974 0.0364 0.0163 0.9967 0.0503 0.0218 0.9941 
Weibull 0.0325 0.0135 0.9978 0.0461 0.0264 0.9924 0.0502 0.0259 0.9926 
Generalized Pareto 0.0348 0.0110 0.9986 0.0313 0.0089 0.9991 0.0223 0.0073 0.9994 
Log-normal 0.0523 0.0220 0.9941 0.0562 0.0189 0.9956 0.0552 0.0197 0.9952 
Gamma 0.0288 0.0123 0.9981 0.0332 0.0126 0.9980 0.0285 0.0146 0.9974 
Rayleigh 0.0315 0.0130 0.9980 0.0341 0.0184 0.9960 0.0697 0.0402 0.9838 
Inv. Weibull 0.0953 0.0436 0.9768 0.0993 0.0400 0.9804 0.0993 0.0400 0.9801 

NOx 
Gumbel 0.0754 0.0299 0.9892 0.0823 0.0417 0.9796 0.0780 0.0372 0.9836 
Weibull 0.0507 0.0237 0.9931 0.0604 0.0364 0.9840 0.0517 0.0289 0.9898 
Generalized Pareto 0.0251 0.0102 0.9987 0.0401 0.0116 0.9984 0.0277 0.0090 0.9990 
Log-normal 0.0295 0.0144 0.9975 0.0268 0.0141 0.9976 0.0286 0.0117 0.9983 
Gamma 0.0414 0.0181 0.9960 0.0514 0.0287 0.9899 0.0449 0.0225 0.9938 
Rayleigh 0.0890 0.0597 0.9678 0.1382 0.0693 0.9579 0.1292 0.0715 0.9564 
Inv. Weibull 0.0673 0.0315 0.9877 0.0636 0.0212 0.9945 0.0693 0.0272 0.9909 
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T a b l e  5  

K-S, RMSE, and R2 for pollutants PM10, SO2, NO, NO2, NOx, and CO at the Boyabat station 

CO 
Gumbel 0.0550 0.0284 0.9905 0.1013 0.0388 0.9820 0.0963 0.0247 1.0000 
Weibull 0.0324 0.0163 0.9967 0.0354 0.0187 0.9961 0.5469 0.2923 0.7000 
Generalized Pareto 0.0462 0.0124 0.9982 0.0245 0.0081 0.9992 0.0304 0.0080 1.0000 
Log-normal 0.0342 0.0124 0.9982 0.0621 0.0230 0.9936 0.0877 0.0401 0.9815 
Gamma 0.0255 0.0110 0.9986 0.0225 0.0095 0.9989 0.0417 0.0181 1.0000 
Rayleigh 0.1332 0.0743 0.9550 0.1607 0.1124 0.9125 0.1550 0.1028 0.9000 
Inverse Weibull 0.0699 0.0344 0.9859 0.1046 0.0452 0.9753 0.1318 0.0603 1.0000 

 

   

 

  

 

Fig. 3. Fitting specific distributions to data on air pollutant concentrations  
at the Merkez station for each month 

According to Table 5, the distribution of PM10 is Gumbel, generalized Pareto, log-
normal, and gamma in January–March, respectively. Furthermore, both model evalua-
tion tests show that the log-normal distribution is well matched with the measured PM10 
data at the Boyabat station for all months, and the log-normal distribution is more suit-
able to represent the SO2 distribution in February and March. Otherwise, the inverse 
Weibull distribution is appropriate for representing the SO2 concentration in January. 
The distribution of NO data is also log-normal and generalized Pareto in January and 
February, respectively. However, the NO data in January does not match any of the 
distributions discussed in this study. The generalized Pareto distribution is seen to be 
more suitable to represent both NO2 and NOx concentrations for all months. For CO 
concentration, the gamma distribution provides a better fit with measured data in Janu-
ary, and the generalized Pareto distribution is more suitable in February and March. 
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Fig. 4. Fitting specific distributions to data on air pollutant concentrations  
at the Boyabat station for each month 
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Furthermore, to illustrate how the pdfs match the data, the histograms and fitted 
pdf plots for the air pollution data at each station have been shown in Figs. 3 and 4. 
These results agree with the findings given in Tables 4 and 5. It is also clear from this 
figures that the inverse Weibull and log-normal distributions show the best performance 
for modeling the peak of PM10 in the January–March and SO2 in January for the Merkez 
station, among others, respectively. However, all distributions are insufficient to model 
SO2 data sets collected in February and March. As far as the Boyabat station is con-
cerned, the log-normal distribution for PM10 and the generalized Pareto distribution for 
NO2 and NOx demonstrate better fitting performance than the others for each month.  

On the other hand, the log-normal and generalized Pareto distributions perform 
better than other distributions in air pollutant observations, especially for February and 
March. However, all considered distributions remain insufficient to model NO data sets 
recorded in February and March. 

4. SUMMARY AND CONCLUSIONS 

The study aims to statistically model the concentrations of air pollutants harming 
both the environment and human health. It attempts to determine which air pollution 
distribution models are better suited for air pollution in January, February, and March. 
Two stations in Sinop province, Merkez and Boyabat, provided the air pollution data 
used in the investigation. Seven statistical distributions were used, namely Gumbel, 
Weibull, generalized Pareto, log-normal, gamma, Rayleigh, and inverse Weibull. 

It can be seen from the statistical analysis that although the Weibull distribution is fre-
quently used to model air pollution data, other distributions that are more suited for model-
ing the data include the generalized Pareto, log-normal, and inverse Weibull distributions. 
Several findings on the statistical distributions employed in the modeling of air pollutants 
differ from those reported in the literature. For example, the distribution of PM10 at the 
Merkez station follows the inverse Weibull distribution in January, February, and March. 
However, while the SO2 distribution is log-normal in January, the distribution of the data for 
the other months could not be determined among the assumed distributions. For this reason, 
curve-fitting plots could not be drawn on the histogram of the data. 

In the Boyabat station, the distribution of PM10 is log-normal for each of the three 
months. The SO2 distribution is the inverse Weibull in January and the log-normal in 
other months. Although the distribution of NO items is determined to be log-normal in 
January, the distribution of the data in February and March could not be determined. 
The distributions of NO2 and NOx are generalized Pareto for each of the three months. 
The distribution of CO is determined as gamma in January and generalized Pareto in 
February and March. Additionally, the fit graphs are generally consistent with these 
results (see Figs. 3 and 4). It should be clear that some of the compatibility graphs ex-
amined, for example, some of the histograms of the graphs of SO2 in Fig. 3 and NO in 
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Fig. 4, do not seem to depict the data adequately. Because curve fittings on the histo-
grams are drawn using only assumed distributions, graphs that are more suitable for 
other distributions that are not addressed in this study may be obtained, which can be 
considered another study subject. 

Finally, the findings of this study demonstrated that different times of the year may 
have different distributions of certain contaminants. Statistical analyses also show that 
the commonly used log-normal distribution is often inadequate to model air pollution 
data. It can be observed that the generalized Pareto distribution demonstrates the best 
overall modeling performance, followed by log-normal and inverse Weibull distribu-
tions. The inverse Weibull distribution also provides flexibility for modeling environ-
mental data sets. Furthermore, suitable theoretical distributions allow for effective pre-
diction of days in the upcoming year that surpass city air quality regulations, provided 
the most relevant distribution that statistically models the pollutant is identified. 
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