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DCSNN OPTIMIZED WITH HYBRID BORDER COLLIE 
 OPTIMIZATION AND ARCHIMEDES OPTIMIZATION 

ALGORITHMS FOR SOLID WASTE PREDICTION IN CHENNAI 

The rapid growth of smart cities and industry causes an increase in waste production. The amount 
of municipal solid waste (MSW) increases by several factors, including population growth, economic 
status, and consumption trends. The inadequacy of basic trash data is a major issue for managing MSW. 
Numerous existing models based on solid waste prediction have been presented so far, but none of 
them predict solid waste accurately and also it consumes more time. To address these concerns, a deep 
convolutional spiking neural network for solid waste prediction (DCSNN-SWP) is proposed in this 
paper. Here, the real-time solid waste prediction data are gathered from the quantity of municipal cor-
poration of Chennai (MCC), landfill, garden garbage, and coconut shell reports in Tamil Nadu (Chen-
nai), such as Zone 9 (Nungambakkam), Zone 10 (Kodambakkam) and Zone 13 (Adyar). Then the col-
lected solid waste data are pre-processed using the kernel correlation model. Then the pre-processing 
data is given to DCSNN-hybrid BCMO and Archimedes optimization algorithm which accurately pre-
dicts the solid waste as wet waste, dry waste, horticulture waste, and dumping yard for 2022–2032 
years. The proposed DCSNN-SWP method has been implemented in Python. 

1. INTRODUCTION 

Because of the changing patterns of consumption and the growth of the urban pop-
ulation, solid waste management (SWM) has become a major concern [1]. Municipal 
solid waste (MSW) includes building and demolition debris, street sweeping, and mar-
ketable, institutional, and leftover cleaning materials [2, 3]. Together with reusable wastes 
like paper, plastic, glass, metal, etc., MSW also includes toxic materials like colorants, 
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insect repellent, used batteries, and medications, as well as compostable living materials 
like fruit and vegetable peelings, leftover food, and muddy waste like blood-stained cot-
ton, sanitary serviettes, and disposable nozzles [4]. Waste Administration Market Val-
uation (2007) current global MSW cohort of 2.02 billion tenors, with an annual growth 
rate of 8%. In India, the total number of MSWs in metropolises has increased eight times 
since 1947 due to cumulative growth and shifting lifestyles [5]. An estimated 90 million 
loads of MSW are produced annually [6, 7]. The percentage of MSW generated per 
capita increased to 1.33% annually [8, 9]. The type and amount of MSW generated in 
India varies rapidly with that of Western nations, mostly due to the appearance of haz-
ards [10–2]. In urban areas, MSW contained a high percentage of decomposable mate-
rials (40–60%) and slow-growing (30–50%) [13–15]. 

The appropriate percentage of living waste in MSW was consistently increasing as 
socio-commercial status decreased; as a result, urban areas produce more living waste 
than rural homes [16–18]. The corporeal and biochemical components of MSW depend 
on some influences, e.g., nutritional customs, the standard of living, scale of viable 
events, and time of year, wherein the entire MSW cohort depends on whole inhabitants 
[19]. Accurate solid waste generation forecasting is essential for the efficient collection 
and removal of MSW. Prediction of MSW cannot be done consistently and is dependent 
on a variety of qualitative factors [20]. However, nowadays a great deal of study is being 
done regarding the prediction of solid waste. The benefits of machine learning tech-
niques are discovered to be due to ambiguity and inadequate data obtainability [21]. 
Several machine learning models attempt to predict solid waste [26–32] but they achieve 
poor prediction accuracy, and also an increase of computation time. To handle these 
downsides, certain solutions are required to be put forward. These drawbacks have pro-
voked the authors to do this study. 

DCSNN-SWP is proposed for solid waste prediction in Chennai. Here, the DCSNN- 
-SWP accurately predicts the solid waste in different zones. 

The key contributions of this paper are as follows: 
• DCSNN optimized with hybrid Border Collie optimization and Archimedes opti-

mization algorithm (DCSNN-SWP) for solid waste prediction in Chennai is proposed. 
• The real-time SWP data are accumulated via quantity of MCC, landfill, garden 

garbage, and coconut shell reports in Tamil Nadu (Chennai) such as Zone-9 (Nungam-
bakkam), Zone 10 (Kodambakkam), Zone 13 (Adyar). 

• The accumulated solid waste data are pre-processed under kernel correlation [22]. 
• The pre-processing data is fed to DCSNN for activating SWP with categoriza-

tion [23]. 
Generally, DCSNN does not adopt any optimization methods to determine the op-

timum parameters to ensure exact SWP. 
• Thus hybrid BCMO-AOA [24, 25] is employed to optimize the DCSNN, which 

estimates the solid waste data accurately. 
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• DCSNN-SWP predicts the solid waste accurately as wet, dry, horticulture, and 
dumping yard. 

• The proposed DCSNN-SWP has been done in Python. Its efficacy is evaluated 
with certain performance metrics. 

• The obtained results of proposed DCSNN-SWP method were compared with existing 
enhancing solid waste prediction with a hybrid one-dimension convolutional neural network 
(1D-CNN) and long short-term memory (LSTM) (1DCNN-LSTM-SWP) [27], adaptive 
neuro-fuzzy inference system model clustered grid partitioning with fuzzy c-means  
and subtractive-clustering for solid waste prediction (FCM-GP-SC-ANFIS-SWP) [29], 
artificial neural network and support vector machine for solid waste prediction (ANN- 
-SVM-SWP) [30] and optimizing solid waste prediction with fuzzy information granu-
lation and genetic algorithm-enhanced support vector regression model (FIG–GA-SVR- 
-SWP) models [32]. 

2. METHODS OF PREDICTION OF SOLID WASTE VOLUME 

Niu et al. [26] introduced a long-term effect detection for predicting municipal solid 
waste utilizing a long short-term memory (LSTM) neural network. LSTM neural net-
work was utilized for forecasting municipal solid waste that comprises LSTM layers 
and dropout layers. It also considers static with dynamic features in MSW temporal 
variation attaining better accuracy prediction and F-Score. But it increases the compu-
tation period. 

Lin et al. [27] suggested the amount of MSW estimation depending on one-dimen-
sion Convolutional Neural Network (CNN) including LSTM memory along attention 
mechanism: A case study of Shanghai. An attention model with one-dimensional CNN 
and LSTM was utilized to forecast the quantity of MSW in Shanghai. It accomplished 
low computation time, but more error rate. 

Liu et al. [28] suggested demand gap examines MSW landfill in Beijing: in terms 
of MSW generation. Long- and short-term memory was combined with Grey Relational 
analysis to effectively forecast the formation of MSW. Originally, the grey relational 
analysis (GRA) was utilized to sort the manipulating characteristics of the MSW cohort 
to accomplish the significant manipulating index. LSTM obtains important manipulat-
ing index factors. It attained greater sensitivity and precision but increased the error rate. 

Adeleke et al. [29] suggested municipal solid waste generation prediction: investi-
gation of the impact of clustering techniques and parameters on adaptive neuro-fuzzy 
inference system (ANFIS) presentation. fuzzy c-means, grid-partitioning, and subtrac-
tive clustering were utilized in ANFIS model for estimating waste generation in South 
Africa. Socio-economic, and demographic provincial data were utilized as input varia-
bles in the 2008–2016 period, and provincial waste quantities as an output variable. It 
attained better accuracy and F-score. But it increases the computation period. 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/artificial-neural-network


8 S. VIDYA et al. 

Ayeleru et al. [30] introduced predicting MSW amounts utilizing an artificial neural 
network with a supported vector machine (ANN-SVM). ANN-SVM was used to fore-
cast the MSW amount. The prediction was dependent on historical data derived via sta-
tistics, and then the projection was made up to 2050. It reached better specificity and 
precision although it increased the error rate. 

Liang et al. [31] suggested predicting municipal solid waste utilizing combined ANN 
with the Archimedes optimization algorithm including socio-economic modules. ANN 
optimized with Archimedes optimization, sine cosine, particle swarm optimization, and 
genetic algorithms for estimating monthly SW generation in Iran. It reached less com-
putation time. But it increased the error rate. 

Dai et al. [32] suggested a municipal solid waste generation distribution prediction 
scheme depending on the integrated fuzzy information granulation and genetic algo-
rithm for the support vector regression modeling (FIG–GA-SVR) method. Primarily, 
the fuzzy information granulation was utilized to grate and forecast the three illuminat-
ing variable quantities. Kriging interpolation mode was utilized to extant the MSW gen-
eration distribution. It reached a low error rate, but a higher computation period. 

3. PROPOSED METHODOLOGY 

An exact prediction of solid waste in Chennai utilizing DCSNN optimized with hy-
brid Border Collie optimization and Archimedes optimization approach (DCSNN- 
-SWP) is discussed in this section. The block diagram of DCSNN-SWP is given in 
Fig. 1. It comprises data acquisition, pre-processing, and prediction. The comprehensive 
explanation of every stage is specified beneath. 

Data acquisition. The real-time SWP data are gathered from the quantity of MCC, 
landfill, garden garbage, and coconut shell reports in Tamil Nadu (Chennai) Zone 9 
(Nungambakkam), Zone 10 (Kodambakkam), Zone 13 (Adyar). Then the gathered solid 
waste data are supplied for pre-processing for removal of redundant data. 

Pre-processing utilizing kernel correlation approach. A gathered solid waste data set is 
pre-processed under the kernel correlation approach. This approach simplifies the large data 
samples along greater dimensions. This approach maintains the valuable data in the sample 
and also decreases the calculation. Hence, this is broadly employed in data processing. Ker-
nel correlation can successfully predict intervals as well as correlation data analysis. 

Repeated data is removed utilizing kernel correlation. Data redundancy is a vital 
concern in solid waste data sets. A correlation filter is determined by  

 
( )Input data Filter data Input data
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Input data Input data

mj
m

m m

∗ ∗

∗

⊗ ⊗
=

⊗

∑
 (1) 

https://www.sciencedirect.com/topics/engineering/artificial-neural-network
https://www.sciencedirect.com/topics/engineering/archimedes
https://www.sciencedirect.com/topics/engineering/optimisation
https://www.sciencedirect.com/topics/engineering/particle-swarm-optimization
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Fig. 1. Block diagram of the DCSNN-SWP method 

Consider ⊗  the process of multiplication as multifaceted conjugation. For episodi-
cally shifted samples, the kernel correlation filter has negligible degradation and uses 
a quick logarithmic Fourier transform rather than matrix algebra to complete tasks 
quickly. For the kernel correlation filter, the error functioning requires to decrease that 
is considered an objective function. The error function minimization is calculated using 
equation 

 ( )( )2 2min Data sample Regression result of the samplew m m
m

f λ ω= +∑   (2) 

where 2λ ω implies regularization expression. From this repeated data are removed in 
the solid waste data set. After that, the pre-processing data is supplied to the classifica-
tion with prediction. 

Classification and prediction using DCSNN-hybrid BCMO-AOA. The pre-processing 
data is supplied to the DCSNN for categorizing the data as wet waste, dry waste, horticul-
ture waste, and dumping yard. The comprehensive illustration of DCSNN is delineated 
below. 

https://link.springer.com/article/10.1007/s11063-021-10514-w
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The proposed DCSNN contains two states such as spike encoding and classification. 
These states contain several layers: a spiking encoding layer, a flattened layer, two con-
volutional layers, two max-pooling layers, two dropout layers, and three fully connected 
layers. 

The pre-processed data are given to the convolution layer. The convolution layer 
performs the convolution process of the input matrix along a filters of p × q size. So, it 
presents a set of feature maps of p q× size. Since it contains Gaussian and normal, each 
filter learns dissimilar features. Then, max-pooling attains nonlinear down-sampling to 
input pre-processed data. It separates the input features into numerous non-overlapping 
rectangular regions. To every rectangular region, it creates output as a maximal value 
that supports diminishing the feature size. Max-pooling is labeled  

 { },max : ,pqa p q ay z p p p s q q q s′ ′ ′ ′= ≤ < + ≤ < +   (3) 

where z implies input matrix (feature map of p × q size), y  implies output matrix (fea-
ture map of p×q size), s implies padding. The pooling layer activates separately in each 
feature map as well as resizes it spatially utilizing max operation. This layer is intro-
duced to manipulate with the convolutional layers limitation, i.e., to record the feature’s 
precise position. 

The concept behind dropout on neural networks is that dropout the units from visi-
ble and hidden layers. The regularization strategy is to prevent over-fitting during the 
training phase. This procedure decreases the complicated co-adaptations between the 
neurons. This is supportive of learning proficient features. The adaptation of extracted 
convolution features to spike trains is explained. As the classifier needs feature vectors 
as input, it is important to pull down the extracted features to convert the feature maps 
into feature vectors. In the leaky integrate-and-fire model including refractory time 
named soft-leaky integrate-and-fire model, the spike encode of acquired feature vectors 
is activated. The leaky integrate-and-fire model neuron contains 2 parts: (i) membrane 
potential behavior and (ii) spike-reset. The dynamics of this model neuron membrane 
potential LIFM ( )f t  depends on input data models ( )Is t  

 LIFM
LIFM

( ) 1 ( )( ) , 0, 1I
I

df t s tf t t s
dt MTC MC

= − + ≥ =   (4) 

where MC and MTC  are membrane capacitance, and membrane time stable. Normal-
ized leaky incorporated with fire mode neuron rate response as well as refractory period 
are labeled in the equation 

 
1

1log 1RP MTC MC
I

N t
s

τ
−

×

  
= − −     

  (5) 
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Assume N = 0, and sI = 1, then the above equation can be rewritten as 

 
( )

1
1( ) log 1

1I RP MTC MC
I

N s t
s

τ
ρ

−

×

  
= + +    −  

  (6) 

In the above equation, ( ) max( , 0),j jρ = MTC MCτ ×  means spiking neuron’s membrane 
constant, RPt  is the refractory period. This maximum could be replaced with a softer maxi-
mum ( )/

1( ) log 1 e .jjρ ℑ= ℑ +  Substituting this softer maximum in the above equation, 

feature encoding is acquired. The solid waste classification and prediction mode are 
considered below. 

For that, let us substitute constant input ( )I Is t s= , and then determine the steady- 
-state firing rate 

 

1
1log 1 if  1( ) ( 1)

0   otherwise

RP MTC MC I
I I

t sN s s
τ

ρ

−

×

   + + ≥   = −   



  (7) 

The proposed learning algorithm for DCSNN structure uses two-staged phases: 
(i) features are learned, (ii) encoded features map to specific class labels. The funda-
mental idea is to use a soft-leaky incorporate-with-fire model rate to encode the features, 
making the spiking signals differentiable so that the spiking feed-forward neural net-
work may be trained using error backpropagation. 

By this, the proposed DCSNN is learned iteratively through error backpropagation 
as well as cyclical learning rates on the count of epochs, wherein a single epoch is de-
termined as an interval when every time series via the training set utilized one time. At 
every epoch, the training set is separated as mini-batches for batch-wise optimization. 
Every back propagation training phase has four segments: forward pass, backward pass, 
loss function, and weight updation. The feature map passes via fully connected layers 
till it attains the output. Then, the propagation error is examined through loss operation 
to generate solid waste classification output. Finally, the proposed DCSNN accurately pre-
dicts the solid waste as wet waste, dry waste, horticulture waste, and dumping yard. How-
ever, the optimum restrictions of DCSNN are required to be optimized tRP, and τMTC×MC via 
soft-leaky integrate-with-fire model neurons parameters to accurately predict the solid 
waste. The optimization approach depends on artificial intelligence and is employed in 
DCSNN owing to its suitability and pertinence. 

Hybrid-BCMO-AOA is exploited to extend DCSNN for discovering the ideal pa-
rameters. Here hybrid-BCMO-AOA is used for tuning the weight and bias parameters 
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of DCSNN. Generally, a certain strategy employed is constraint formation (grid, man-
ual, and random explorations). These explorations share its unusual feebleness about 
reiteration time, but no subterfuge-assembled familiar search. So, to address these is-
sues, a hybrid-BCMO-AOA is used. 

Hybrid-BCMO-AOA is a metaheuristic approach. In that, BCMO mimics the 
sheep herding styles of Border Collie dogs and it avoids the local optima and good 
convergence capability. Then, the Archimedes optimization algorithm is utilized 
which mimics the concept of buoyant force employed mounting an object, partially or 
fully immersed in fluid, proportional to displaced fluid weight. It achieves a seamless 
changeover between exploration and exploitation and can get to the global optimum 
more quickly. By this, hybrid-BCMO-AOA reaches the optimized fitness solution 
faster. Here, hybrid-BCMO-AOA is selected because it contains its improvement; it 
consumes less iteration period than above mentioned explorations, and also defines 
better hyperparameter value. 

Stepwise procedure of hybrid-BCMO-AOA for optimizing DCSNN. The step-by- 
-step procedure is considered to get the ideal values of DCSNN based on hybrid- 
-BCMO-AOA. First, the hybrid-BCMO-AOA makes an initial uniformly distributed 
population to optimize ypqa and N(sI) optimum parameter values from max-pooling and 
steady-state firing rate of DCSNN weight with bias parameters. The optimum solution 
has been upgraded via hybrid-BCMO-AOA and the corresponding flowchart is repre-
sented in Fig. 2. The stepwise process is as follows: 

Step 1. Initialization. The population of three dogs is initialized and sheep with their 
acceleration, velocity, and time from Border Collie optimization and positions of all 
objects with their density, volume, and acceleration from Archimedes optimization al-
gorithm. 

Step 2. Random generation. After the initialization procedure, DCSNN input pa-
rameters were generated randomly utilizing a hybrid-BCMO-AOA approach. 

Step 3. Fitness function. Create the random solution from initialized values. This is 
examined with the parameter values optimization of ypqa and N(sI) from max-pooling 
and steady-state firing rate of DCSNN weight and biases parameters 

 Fitness function = optimization  and ( )pqa Iy N s   (8) 

Step 4. Position updation of dog and sheep for optimizing ypqa. In this section, the 
Border Collie optimization approach is used to optimize ypqa from max-pooling of 
DCSNN parameters with the position updation of dog and sheep. Initially, the velocity v 
of a chief, and left and right dogs are obtained using equations 

 ( )1/22( 1) ( ) 2 ( ) ( )C C C Cv x v x A x P x+ = +   (9) 
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 ( )1/22( 1) ( ) 2 ( ) ( )L L L Lv x v x A x P x+ = +   (10) 

 ( )1/22( 1) ( ) 2 ( ) ( )R R C Rv x v x A x P x+ = +   (11) 

where vi(x) depicts the velocity, Ai acceleration, and Pi(x) position of the chief (i = C), 
left (i = L), and right (i = R) dog, respectively. 

 

Fig. 2. Flowchart of the hybrid-BCMO-AOA algorithm for optimizing DCSNN 

Then the velocity of the congregated sheep is obtained  

 ( )1/22( 1) ( 1) 2 ( ) ( )CS C C CSv x v x A x P x+ = + +   (12) 

where PCS(x) depicts the position of a congregated sheep. The velocity of a trailed sheep 
is obtained with the help of equations: 
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 ( )1/22
1( 1) tan( ) 2 ( ) ( )L L L Lv v x A x P xθ= + +   (13) 

 ( )1/22
2( 1) tan( ) 2 ( ) ( )R R R Rv v x A x P xθ= + +   (14) 

 ( )( 1)
2

L R
TS

v v
v x

+
+ =   (15) 

where 1θ  varies between 0 and 90 deg, 2θ  between 91 and 180 deg. The values of θ1 
and θ2 are chosen randomly. Then the velocity of the observed sheep is obtained with 
the help of equations 

 ( )1/22( 1) ( 1) 2 ( ) ( )OS L L Lv x v x A x P x+ = + −   (16) 

 ( )1/22( 1) ( 1) 2 ( ) ( )OS R R Rv x c x A x P x+ = + −   (17) 

The dog with the least fitness is considered because it is adjacent to a sheep. Then 
the acceleration of all dogs and all sheep (AT) is obtained 

 
( )( 1) ( )

( 1)
( )

T T
T

T

v x v x
A x

t x
+ −

+ =   (18) 

where tT is the negotiated total time of all dogs and all sheep: 

 
( )

1

( 1) ( )
( 1) avg

( 1)

k
T T

T
T T

v x v x
t x

A x=

+ −
+ =

+∑   (19) 

The position updations of the chief, left and right dogs are obtained by  

 21( 1) ( 1) ( 1) ( 1) ( 1)
2C C C C CP x v x t x A x t x+ = + + + + +   (20) 

 21( 1) ( 1) ( 1) ( 1) ( 1)
2L L L L LP x v x t x A x t x+ = + + + + +   (21) 

 21( 1) ( 1) ( 1) ( 1) ( 1)
2R R R R RP x v x t x A x t x+ = + + + + +   (22) 

The position updation of congregated sheep PCS, trailed sheep PTS, and observed 
sheep POS are obtained with the help of the following equations 



 DCSNN optimized with hybrid Border Collie optimization 15 

 21( 1) ( 1) ( 1) ( 1) ( 1)
2CS CS CS CS CSP x v x t x A x t x+ = + + + + +   (23) 

 21( 1) ( 1) ( 1) ( 1) ( 1)
2TS TS TS TS TSP x v x t x A x t x+ = + + − + +   (24) 

 21( 1) ( 1) ( 1) ( 1) ( 1)
2OS OS OS OS OSP x v x t x A x t x+ = + + − + +   (25) 

By this, it optimizes the max-pooling parameter of DCSNN with the position up-
dation of a dog and a sheep from the Border Collie optimization algorithm. 

Step 5. Position updation of exploration and exploitation of objects for optimizing 
N(sI). In this section, AOA is utilized to optimize ( ).IN s  Initially, the density (D) and 
volume V of object l from Archimedes optimization algorithm are updated: 

 ( )best( 1) ( ) random ( )l l lD x D x D D x+ = + −   (26) 

 ( )best( 1) ( ) random ( )l l lV x V x V V x+ = + −   (27) 

where Dbest and Vbest imply volume and density related to the best object identified so far, 
then random  is distributed random number uniformly. Then the transference operator TO 
and compactness aspect CA are updated with the help of the following equations: 

 max

max

exp x xTO
x

 −
=  

 
  (28) 

 max

max max

( 1) exp x x xCA x
x x

   −
+ = −   

   
  (29) 

where x and xmax are the iteration number and maximum iterations, respectively. If 
TO ≤ 0.5, the exploration phase occurs, which means there a collision occurs between 
the object and random material  

 ( 1)
( 1) ( 1)
RM RM RM

l
l l

D V AA x
D x V x

+
+ =

+ +
  (30) 

where the superscripts RM and l refer to random material (RM) and object (l). Then the 
normalized acceleration (Aln) is  

 ( 1) min( )( 1)
max( ) min( )

l
ln

A x AA x w r
A A

+ −
+ = +

−
  (31) 

where w  and r denote the range of normalization set to 0.9 and 0.1. Then the position 
updation of exploration phase is obtained 
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 ( )1 normalize Random( 1) ( ) Const Random ( 1) dim ( )l l l lt x t x A x t t x−+ = + × × + × × −   (32) 

where Const1 equals 2, and the dimensional vector dim  generates a random count 
among [0, 1]. Similarly, if 0.5,TO >  the exploitation phase occurs with no collision 
between the object and random material  

 best best bestDensity( 1)
Density ( 1) ( 1)l

l l

V AA x
x V x

+
+ =

+ +
  (33) 

where bestA  is the acceleration of the best object. Then update the normalized accelera-
tion and update the direction flag using the following equation  

 
1 if 0.5
1 if 0.5

S
DF

S
≤

= − >
  (34) 

where S = 2×Random – Const4. Then the position updation of the exploitation phase is 
obtained utilizing the equation 

( )best 2 normalize best( 1) ( ) Const Random ( 1) dim ( )l l lt x t x DF A x X t t x−+ = + × × × + × × −   (35) 

where Const2 equals 6. X reaches the maximum and then it is directly proportional to 
the transference operator using X = Const3 – TO. By this, it optimizes the DCSNN pa-
rameters of the steady state firing rate including position updation of object exploration 
and exploitation phase from Archimedes optimization approach. 

Step 6. Termination condition. Hyper-parameter ypqa and N(sI) from max-pooling and 
the steady state firing rate of DCSNN weight and biases parameters optimized under hybrid- 
-BCMO-AOA will iteratively repeat step 3 until it fulfills the halting criteria X = X + 1. 
Finally, DCSNN-hybrid BCMO-AOA estimates the solid waste generation in Chennai 
with better accuracy by diminishing the computational time including error. 

4. RESULT AND DISCUSSION 

The DCSNN optimized with hybrid-BCMO-AOA (DCSNN-SWP) for solid waste 
prediction in Chennai is discussed here. The proposed DCSNN-SWP technique is exe-
cuted in Python. Its effectiveness is examined by certain metrics. The acquired results 
of DCSNN-SWP are compared to the existing models, such as evaluation of MSW 
quantity depending upon one-dimension CNN, long short-term memory along attention 
mode: a case study of Shanghai (1DCNN-LSTM-SWP) [27], municipal solid waste gen-
eration prediction: the study of clustering strategies effect and parameters on ANFIS 
presentation (FCM-GP-SC-ANFIS-SWP) [29], predicting municipal solid waste amount 
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utilizing ANN with SVM: a case study of Johannesburg (ANN-SVM-SWP) [30] and mu-
nicipal solid waste generation distribution prediction scheme depending on FIG–GA-SVR 
(FIG–GA-SVR-SWP) [32], respectively. The simulation parameter of the proposed 
DCSNN-SWP method is tabulated in Table 1. 

T a b l e  1  

Simulation parameters 

Parameter Value 
Maximum iteration 200 
Velocity of dog and sheep 0–1 
Time 0–1 
Position 30 
Dimensional vector 0–1 
Normalization range w 0.9 
Normalization range r 0.1 
Const1 2 
Const2 6 
Const3 2 
Const4 0.5 
θ1 0–90 deg 
θ2 91–180 deg 

4.1. DATASET DESCRIPTION 

The real-time SWP data are taken from the quantity of MCC, landfill, garden garbage, 
and coconut shell report in Tamil Nadu (Chennai) like Zone 9, 10, 13. The predicted out-
come of solid waste from 2022 to 2032 around Chennai zone with the help of DCSNN- 
-SWP technique is given in Tables 2–4. 

T a b l e  2  

Predicted outcome for Corporation Chennai Zone 9, Nungambakkam under DCSNN-SWP technique [Mt] 

Outcome 2022 2023 2024 2025 2026 2027 
Dumping yard 509.513 524.9023 551.7277 584.3604 609.3258 615.8057 
Wet waste processing  28.62 31.01693 34.05068 35.09858 39.02366 41.11426 
Dry waste processing 20.5845 29.82222 36.76231 37.18362 41.78971 42.38772 
Horticulture waste 15.213 18.53954 19.75569 20.15294 20.68298 22.27242 
Total 573.9305 604.281 642.2963 676.7955 710.8221 721.5801 
Outcome 2028 2029 2030 2031 2032  
Dumping yard 648.091 658.1658 659.8112 674.1702 683.4928  
Wet waste processing  43.26943 46.14938 48.30325 52.2567 54.95881  
Dry waste processing 42.85197 43.18789 43.67281 43.68472 46.86808  
Horticulture waste 23.94372 26.15247 27.77472 28.46363 28.83893  
Total 758.1561 773.6555 779.562 798.5752 814.1586  
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T a b l e  3  

Predicted outcome for Corporation Chennai Zone 10, Kodambakkam utilizing DCSNN-SWP technique 

Outcome 2022 2023 2024 2025 2026 2027 
Dumping yard 524.5321 542.6516 575.5634 576.8706 582.593 592.5172 
Wet waste processing  29.17619 38.98868 39.03418 41.6997 42.26803 42.36683 
Dry waste processing 10.00169 10.69116 11.86208 13.79088 14.79391 15.18336 
Horticulture waste 19.36887 21.95475 22.06086 23.33548 24.30765 25.20729 
Total 583.0789 614.2861 648.5205 655.6967 663.9626 675.2747 

Outcome 2028 2029 2030 2031 2032  
Dumping yard 593.2808 598.712 607.7993 617.9397 626.5371  
Wet waste processing  48.2589 49.03186 50.39691 51.91157 56.92565  
Dry waste processing 15.74416 15.85848 18.28591 18.36021 24.96575  
Horticulture waste 27.56571 28.67127 28.68118 29.79985 29.84155  
Total 684.8495 692.2736 705.1633 718.0113 738.27  
 

T a b l e  4  

Predicted outcome for Chennai Corporation Zone 13, Adyar utilizing DCSNN-SWP technique 

Outcome 2022 2023 2024 2025 2026 2027 
Dumping yard 429.7274 457.9681 478.4033 485.7311 488.8212 501.7036 
Wet waste processing  24.6205 25.74269 27.13192 30.72409 31.9755 36.19862 
Dry waste processing 3.460746 3.746106 4.861171 6.225701 7.34317 7.703916 
Horticulture waste 19.65404 24.58592 26.08493 26.104 26.62033 26.88707 
Total 477.4626 512.0428 536.4813 548.7849 554.7602 572.4932 

Outcome 2028 2029 2030 2031 2032  
Dumping yard 510.3323 521.4036 533.3909 543.3778 549.8741  
Wet waste processing  37.88347 37.9324 38.42258 42.77969 44.59696  
Dry waste processing 9.374881 10.44931 11.11601 12.52389 12.68924  
Horticulture waste 27.23391 27.83242 28.14452 28.81033 31.17889  
Total 584.8246 597.6177 611.074 627.4917 638.3392  

4.2. PERFORMANCE METRICS 

The mentioned metrics are examined to validate the performance of the proposed 
method. For that, the following confusion matrix is essential. 

True positive (TP): accurate SWP and accurate classification. 
True negative (TN): inaccurate SWP and inaccurate classification. 
False positive (FP): inaccurate SWP and accurate classification. 
False negative (FN): accurate SWP and inaccurate classification. 
Accuracy A, precision P, specifity Sp, and sensitivity Sn, F1 score, and error rate are 

given by the following equations: 

 TP TNA
TP FP TN FN

+
=

+ + +
  (36) 
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 TPP
TP FP

=
+

  (37) 

 TNSp
FP TN

=
+

  (38) 

 TP
TP FN

Sn =
+

  (39) 

 
( )

1 score 1
2

TPF
TP FP FN

=
+ +

   (40) 

 Error rate = 100  Accuracy−   (41) 

4.3. SIMULATION ANALYSIS 

Figures 3–10 depict the performance analysis of DCSNN-SWP and existing mod-
els. The DCSNN-SWP technique is analyzed with existing 1DCNN-LSTM-SWP [27], 
FCM-GP-SC-ANFIS-SWP [29], ANN-SVM-SWP [30], and FIG–GA-SVR-SWP [32] 
models. 

 

Fig. 3. Results of the predicted accuracy analysis 

Figure 3 displays the predicted accuracy analysis. The DCSNN-SWP reaches greater 
accuracy than other methods. The ANN-SVM-SWP method attains a lesser accuracy, FIG 
–GA-SVR-SWP achieves a somewhat greater result with maximal accuracy value, FCM- 
-GP-SC-ANFIS-SWP method attains a moderate accuracy value. Moreover, the 1DCNN- 
-LSTM-SWP model reaches slightly better accuracy. The DCSNN-SWP achieves 8.93, 
13.15, 26.43, and 16.96% greater accuracy for dry waste prediction, 5.73, 14.47, 20.92, 
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and 6.74% higher accuracy for the dry waste prediction, 3.99, 7.89, 16.64, and 21.91% 
higher accuracy for the horticulture waste prediction, 11.73, 3.26, 7.52, and 10.01% 
better accuracy for the dumping yard prediction assessed to the existing 1DCNN-LSTM-
SWP, FCM-GP-SC-ANFIS-SWP, ANN-SVM-SWP and FIG–GA-SVR-SWP methods, 
respectively. 

 

Fig. 4. Results of the predicted precision analysis 

 

Fig. 5. Results of the predicted specificity analysis 

Figure 4 shows the predicted precision analysis. Here, DCSNN-SWP method attains 
8.76, 14.85, 4.44, and 11.99% higher precision for the wet waste prediction, 6.94, 15.89, 
6.49, and 12.94 higher precision for the dry waste prediction, 16.68, 5.8, 9.05, and 21.01% 
higher precision for the horticulture waste prediction, 11.65, 3.11, 7.95 and 6.56% better 
precision for the dumping yard prediction than existing 1DCNN-LSTM-SWP, FCM-GP- 
-SC-ANFIS-SWP, ANN-SVM-SWP and FIG–GA-SVR-SWP methods, respectively. 

Figure 5 shows the results of the predicted specificity analysis of the existing tech-
niques and proposed DCSNN-SWP model. The proposed DCSNN-SWP method attains 
28.01, 11.14, 4.42, and 14.3% higher specificity for the wet waste prediction, 11.31, 
22.77, 13.43, and 5.99% higher specificity for the dry waste prediction, 18.53, 20.86, 
7.83, 12.73% greater specificity for the horticulture waste prediction, 4.8, 18.08, 10.26, 
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and 4.62% greater specificity for the dumping yard prediction analyzed to the existing 
1DCNN-LSTM-SWP, FCM-GP-SC-ANFIS-SWP, ANN-SVM-SWP and FIG–GA- 
-SVR-SWP methods. 

 

Fig. 6. Results of the predicted sensitivity analysis 

Figure 6 shows the results of the predicted sensitivity analysis of the existing tech-
niques and proposed DCSNN-SWP model. The proposed DCSNN-SWP method attains 
25.39, 7.34, 13.37, and 14.39 higher sensitivity for the wet waste prediction, 25.61, 7.69, 
11.81, and 20.62% higher sensitivity for dry waste prediction, 18.92, 6.44, 9.23, and 5.01% 
greater sensitivity for the horticulture waste prediction, 17.73, 2.01, 9.58, and 7.006% 
greater sensitivity for the dumping yard prediction assessed to the existing 1DCNN-
LSTM-SWP, FCM-GP-SC-ANFIS-SWP, ANN-SVM-SWP, and FIG–GA-SVR-SWP 
methods, respectively. 

 

Fig. 7. Results of the predicted F-score analysis 
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Figure 7 implicates predicted F-Score analysis. Here, DCSNN-SWP method attains 
29.35, 15.71, 20.79%, and 10.63% higher F-Score for wet waste prediction, 17.55, 14.63, 
20.29, and 9.299% greater F-Score for dry waste prediction, 16.45, 12.3, 19.52, and 8.53% 
greater F-Score for horticulture waste prediction, 11.46, 6.18, 18.48, and 7.65% greater 
F-Score for dumping yard prediction analyzed with existing 1DCNN-LSTM-SWP, FCM-
GP-SC-ANFIS-SWP, ANN-SVM-SWP and FIG–GA-SVR-SWP methods, respectively. 

 

Fig. 8. Results of the predicted error rate analysis 

 

Fig. 9. Results of the predicted computation time analysis 

Figure 8 represents the results of the predicted error rate analysis. The DCSNN- 
-SWP reaches 98.43, 98.88, 99.37, and 99.10% less error rate for the wet waste prediction, 
85.82, 93.38, 95.09, and 87.59% less error rate for the dry waste prediction, 84.19, 91.02, 
95.18, and 96.13% less error rate for the horticulture waste prediction; 91.87, 77.3, 88.27, 
and 90.73% less error rate for the dumping yard prediction analyzed to the existing 
1DCNN-LSTM-SWP, FCM-GP-SC-ANFIS-SWP, ANN-SVM-SWP and FIG–GA-SVR - 
-SWP methods. 

Figure 9 displays the results of the predicted computation time analysis of the existing 
techniques and proposed DCSNN-SWP model. The proposed DCSNN-SWP method at-
tains 69.58, 64.91, 53.96, and 64.48% lower computation time compared with those offered 
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by the existing 1DCNN-LSTM-SWP, FCM-GP-SC-ANFIS-SWP, ANN-SVM-SWP and 
FIG–GA-SVR-SWP methods, respectively. 

 

Fig. 10. Results of the receiver operating characteristics (ROC) analysis 

Figure 10 shows the results of the ROC analysis of the existing techniques and proposed 
DCSNN-SWP model. The proposed DCSNN-SWP method attains 5.35, 3.97, 2.688, and 
2.265% higher area under the curve (AUC) compared with THE existing 1DCNN-LSTM- 
-SWP, FCM-GP-SC-ANFIS-SWP, ANN-SVM-SWP, and FIG–GA-SVR-SWP methods, 
respectively. 

5. CONCLUSION 

Deep convolutional spiking neural network for solid waste prediction (DCSNN- 
-SWP) is implemented successfully for SWP in Chennai. The DCSNN-SWP technique 
is done in Python, its efficacy is analyzed with mentioned metrics. The DCSNN-SWP 
achieves 11.01, 9.91, 6.98, and 13.13% higher precision, 15.66, 18.22, 8.98, and 9.414% 
higher specificity, 21.91, 5.87, 11, and 11.75% higher sensitivity, 18.7, 12.21, 19.77, 
and 9.03% higher F-Score and 90.08, 90.15, 94.48, and 93.39% lower error rate com-
pared with existing 1DCNN-LSTM-SWP, FCM-GP-SC-ANFIS-SWP, ANN-SVM- 
-SWP and FIG–GA-SVR-SWP methods, respectively. Regardless of origin, hazard po-
tential, or content, these waste types must be dealt with thoroughly to ensure optimal 
environmental run-throughs. Since waste management is a crucial component of main-
taining natural cleanliness, it should be included in ecological planning. The primary 
objective of waste management is to prevent and eliminate harmful effects of waste 
materials on the environment and human health to preserve economic growth and higher 
standards of living. The proper disposal of unneeded items requires a lot of human re-
sources and should be done in the most efficient way possible by preventing the growth 
of trash and controlling costs. So in the future, an Internet of Things-based waste man-
agement system utilizing the proposed technique will be used. 
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