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PREDICTION OF GROUNDWATER CONTAMINATION 
IN AN OPEN LANDFILL AREA USING A NOVEL HYBRID 

CLUSTERING-BASED AI MODEL 

Groundwater is a vital resource that provides drinking water to over half of the world’s population. 
However, groundwater contamination has become a serious issue due to human activities such as in-
dustrialization, agriculture, and improper waste disposal. The impacts of groundwater contamination 
can be severe, including health risks, environmental damage, and economic losses. A list of unknown 
groundwater contamination sources has been developed for the Wang-Tien landfill using a groundwa-
ter modeling system (GMS). Further, AI-based models have been developed which accurately predict 
the contamination from the sources at this site. A serious complication with most previous studies using 
artificial neural networks (ANN) for contamination source identification has been the large size of the 
neural networks. We have designed the ANN models which use three different ways of presenting 
inputs that are categorized by hierarchical K-means clustering. Such an implementation reduces the 
overall complexity of the model along with high accuracy. The predictive capability of developed mod-
els was assessed using performance indices and compared with the ANN models. The results show that 
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the hybrid model of hierarchical K-means clustering and ANN model (HCA-ANN) is a highly accurate 
model for identifying pollution sources in contaminated water. 

1. INTRODUCTION 

Groundwater contamination is a serious environmental issue in many urban areas, 
posing a significant threat to public health and the environment. Groundwater contami-
nation prediction is a crucial component of groundwater management, as it helps to 
identify potential sources of contamination and take appropriate measures to prevent or 
mitigate the impacts of contamination. In recent years, there has been significant re-
search in the field of groundwater contamination prediction, aimed at developing relia-
ble models and tools for assessing the vulnerability and risk of groundwater contamina-
tion. 

Several studies have focused on developing predictive models that use a combina-
tion of statistical and machine-learning techniques to identify the factors that contribute 
to groundwater contamination [1–4]. These models consider various parameters such as 
land use, hydrogeological characteristics, and environmental factors, to identify areas 
that are most vulnerable to contamination. Other studies have used geospatial analysis 
and remote sensing techniques to map the distribution of groundwater contamination, 
providing valuable insights into the sources and extent of contamination. 

The use of advanced analytical techniques such as isotopic and geochemical analyses 
has also shown promise in predicting groundwater contamination. These techniques help 
to identify the sources and pathways of contaminants, enabling better management and 
remediation strategies. 

However, despite the progress made in the field of groundwater contamination pre-
diction, several challenges remain. The complex nature of groundwater systems, varia-
bility in contaminant behavior, and the lack of reliable data remain major obstacles to 
developing accurate predictive models. Furthermore, the effectiveness of these models 
in real-world applications remains to be tested. 

While significant progress has been made in the field of groundwater contamination 
prediction, more research is needed to develop accurate and reliable predictive models. 
In this research, a novel hybrid model of hierarchical K-means clustering and ANN 
model (HCA-ANN) is utilized to reduce the complexity of the AI model and increase 
the accuracy of the prediction model.  

Atmadja et. al. [5] divided the problem of identifying groundwater contamination 
sources into two categories. Firstly, to reconstruct the source release history, we need to 
locate a known source location. In the second problem, the location of the source is 
determined using the concentration and time of the release. The researchers also exam-
ined the methods that had been developed for identifying the release history and source 
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location, including optimization, probabilistic, and geo-statistical simulation, and ana-
lytical approaches based on regression. Liu and Ball [6] divided this issue into two cat-
egories when it came to recovering the release history. The release history is assumed 
to be a function first and then reformulated as an optimization problem. An estimation 
method using a gradient type and a non-gradient type is used for estimating the release 
function’s best-fit parameters. Comparing the simulated and sampling concentrations, 
the full estimation approach reconstructs the release history [7]. 

Groundwater transport simulation models based on linear programming and multi-
ple regressions were used [8] to estimate the source information. As a result of a modi-
fied finite element model and limited data from monitoring wells. A method of estimat-
ing source location and time history in heterogeneous sites was proposed in [7] using 
particle methods. Bagtzoglou and Hossain [9] investigated different types of source in-
formation estimation problems using finite difference methods. By using this method, 
they approximated the groundwater flow equation and the transport equation in two 
dimensions.  

An artificial neural network (ANN) was used to identify unknown pollution sources 
by Singh et al. [10]. For identifying unknown sources of water, the GA-based simulation 
optimization technique was used by Sun [11]. They studied the application of ANN 
methods based on varying data availability and errors in concentration measurements. 
To identify unknown sources of groundwater pollution, they used a simulation optimi-
zation technique based on GA. They evaluated the performance of the designed meth-
odology based on the characteristics of the sources. 

Mahinthakumar and Sayeed [12] solved the source identification problem of ground-
water using the hybrid genetic algorithm local search (GA-LS) method. As a result of GA, 
this group obtained results that then served as the basis for the local search, to identify the 
global optimum. They also studied various hybrid GA-LS optimization techniques to de-
termine the contamination source information. In steady-state flow fields, single and mul-
tiple-source releases in 3D heterogeneous flows were investigated. Results showed that 
the source location identification problem is much more challenging than the release 
history recovery problem. 

Yeh et al. [13] investigated sources using a backward probability model. SATS- 
-GWT is an approach designed for estimating water contamination source information, 
including the location of the source, concentration of the waste released, and the time 
for which the waste is released, they used a combination of simulated annealing (SA), 
tabu search (TS), and the MODFLOW-GWT groundwater flow and solute transport 
model. MODFLOW-GWT simulated sampling concentrations at monitoring points 
based on a known source and concentration during release. Zou et al. [14] proposed 
a neural network-based generative algorithm that overcomes the computational limitations 
of inverse modeling by replacing the water quality model with an efficient NN-based func-
tional model. Bagtzoglu and Hossain examined ANN applications for site characteriza-
tion in 2009 based on a geo-statistical approach to identify contaminants in a 2D aquifer.  
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Nayak et al. [15] forecasted groundwater levels using ANN. The approach was ap-
plied to an unconfined aquifer system located in Godavari Delta, India. The data selec-
tion was done by applying statistical analysis of available datasets. The groundwater 
levels in two wells were predicted using many ANN models. The sensitivity analysis of 
the developed approach was also performed. The results showed the novelty of ANN 
models in simulating groundwater levels. 

Behzad et al. [16] forecasted water levels of aquifer systems using SVM and ANN . 
The forecasting abilities of both approaches were also compared. Both models provided 
almost similar results in all the cases. However, SVM outstripped the results of ANN pre-
dicting a longer duration. This suggests that SVM can be effectively applied for future GWL 
prediction when the data availability is limited. Jalalkamali et al. [17] applied a neuro-fuzzy 
approach to predict the monthly frequency of groundwater levels in Kerman, Iran.  

Lee et al. [18] mapped groundwater quality in Boryeong, Korea using GIS, ANN, and 
SVM approaches. The ANN model was developed using the BP algorithm while a polyno-
mial kernel was applied to develop the SVM approach. Both models showed almost similar 
accuracy as ANN showed 83.57% and SVM 80.83%. This shows that both ANN and SVM 
approaches can be effectively utilized for groundwater-related studies. 

ANN- and SVM-based AI models have great potential for water contamination source 
detection. The models have shown high accuracy in detecting contamination sources, and 
they can be used as a tool for effective management of water resources. However, further 
research is needed to optimize the models and to integrate them with other data-driven tech-
niques for improved performance. Hierarchical K-means clustering followed by ANN mod-
els has been extensively used for prediction tasks in various domains [19]. As per the exten-
sive literature survey, this method is not utilized for the prediction of water contamination 
sources. In this research, the generated water contamination data is divided into clusters 
using a hierarchical K-means clustering algorithm and further, it is utilized for training and 
testing the ANN model. This multi-stage approach reduces the complexity of the ANN 
model and also increases the accuracy of the prediction.  

2. AI MODEL DESIGN METHOD  
FOR WATER CONTAMINATION PREDICTION  

This section briefs about the standard methodology utilized in AI-based model de-
velopment for water contamination source identification. The methodology adopted for 
contamination source identification sequentially is as follows (Fig. 1): 

• data generation/generation of patterns, 
• simulation of spatial and temporal responses, 
• breakthrough curve characterization, 
• AI model building, 
• performance evaluation of developed models. 
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Fig. 1. Methodology of model development 

To understand and mitigate the effects of water contamination, it is important to 
generate realistic and representative data. One approach to generating such data is by 
using Latin hypercube sampling in MATLAB [20]. Latin hypercube sampling is a sta-
tistical sampling technique that generates samples that are evenly spaced along each 
dimension of the input variables. In the context of water contamination, the input vari-
ables could include pH, temperature, concentration of contaminants, etc. 

To generate water contamination data using Latin hypercube sampling in MATLAB, 
the first step is to define the input variables and specify the range of values for each 
variable. Next, the number of samples is determined and the Latin hypercube sample 
matrix is generated in MATLAB. This sample matrix is then mapped to the input vari-
able ranges. Once the Latin hypercube sample matrix has been generated, the water 
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contamination data can be simulated for each sample using a water contamination 
model. This model could be a mathematical model or a simulation model that describes 
the behavior of water contaminants under different conditions. 

Finally, the results can be visualized using plots or other graphical representations. 
Groundwater Management Systems (GMS) [21] simulate the spatial and temporal re-
sponses based on these data. These responses produce a breakthrough curve (BTC) at 
each location. Each breakthrough curve is characterized using multistage model devel-
opment [22]. These models are then evaluated using different performance indices. 

Groundwater simulation involves specifying equations that describe the process of 
flow, defining the boundaries of the aquifer, and setting up the aquifer's initial condi-
tions. Simulation of groundwater flow and contamination transport in the groundwater 
system has been carried out using the Groundwater Management System (version 7.1, 
2011) developed by Aquaveo [21].  

Using Pinder and Bredehoeft [23], a nonhomogeneous anisotropic and saturated aquifer 
can be represented by the following equation as a steady-state, three-dimensional flow: 

 x y z s
h h h hK K K Q S

x x y y z z t
 ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + ± =    ∂ ∂ ∂ ∂ ∂ ∂ ∂    

 (1) 

x, y, and z are the directions in which the hydraulic conductivity coefficients are meas-
ured, h stands for the potentiometric head, sources and sinks are represented by Q per 
unit volume, and time is represented by t. 

A transient three-dimensional equation can be written as follows [23] for transient 
solute transport in a saturated aquifer: 

 ( )
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C is the contaminant concentration, qs being a specific discharge of fluid, Qh volume of 
source/sink, the distance xi along the respective axis is Dij, and the seepage is vi, sources 
and sinks are represented by Cs and porosity by θ. 

3. STUDY AREA 

Located in the Yong-Kang Municipality of Tainan, the Wang-Tien landfill site is the 
subject of the study [24] (Fig. 2). A total of 773 970 m3 of solid waste accumulated in the 
landfill from 1992 until 2002 when it was decommissioned. In the study area, the longitudes 
are 23°2′29′′ N and 23°2′36′′ N, and the latitudes are 120°16′1′′ E and 120°16′22′′ E. The 
total area is 39 333 m2 and the longitudes are 23°2′29′′ N and 23°2′36′′ N [24]. With an 
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elevation range of 8.75–25 m above mean sea level and a slope of 0.1% from southeast to 
northwest, the study area is situated above mean sea level. Currently, the landfill is sur-
rounded by industrial areas of Yong-Kang and Hsu-Hsian Creek, which drains into Yan-
Shuei Creek. The site consists of an area 175 m North-South and 225 m East-West. 

 

Fig. 2. Study area of Wang-Tien landfill site [24] 

 

Fig. 3. Layer details of Wang-Tien landfill site [24]; 
the depth below the ground surface is given in brackets in m 
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The details of elevation and material of layers are shown in Fig. 3. The average precip-
itation in the Tainan area is 1828.4 mm/year and the average evaporation is 1476 mm/year 
in the field area. The monthly variation in recharge in 2013 is shown in Fig. 4. Model pa-
rameters for flow and contaminant transport modeling are tabulated in Table 1. The magni-
tude of source fluxes at different locations and time duration is presented in Table 2.  

 

Fig. 4. Transient variation of recharge in 2013  

T a b l e  1  

Model Parameters for the Wang-Tien Landfill Site [24] 

Model parameters Value 
Longitudinal dispersivity αL, m 2.5 
Transverse dispersivity αTH, αTV, m 0.5 
Filling material porosity θ 0.35 

silty clay layer 0.28 
fine sand layer 0.3 
clayey sand layer 0.04 

Hydraulic conductivity for filling material layer, m/s 1.2610–4 
silty clay layer 1.26×10–5 

fine sand layer 7.17 10–4 

clayey sand layer 7.17×10–7  
 

T a b l e  2  

Source flux from different sources 

Time 
Step 

Source [g/s] 
S1 S2 S3 S4 

1 15.49 21.21 10.60 8.73 
2 2.2 1.50 3.20 0.88 
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4. ANN MODELS FOR IDENTIFYING CONTAMINATION SOURCES 

To identify the potential pollution source using breakthrough curves, the pollution 
source is assumed to be active for a constant duration injecting a conservative pollutant at a 
constant rate. Each BTC contains 20 time intervals, which are then used for making different 
models. A total of 250 input-output patterns were generated, of which 175 were used for the 
training and 75 for testing. Four ANN models were generated using these data to predict the 
source magnitude. The outputs are eight corresponding source flux values as the target in 
each pattern. The different models are described later in the paper. 

The multistage models viz., initial (single-stage), intermediate stage (second stage), and 
final stage (third stage), are developed for the identification of groundwater sources. A total 
of eight different models have been developed using ANN and hybrid (ANN-SVM) ap-
proach. For the nomenclature of models, I-models indicate single-stage, II-models and  
III-models indicate the intermediate (second) stage, and IV-models indicate final (third) 
stage models. In I-models, the inputs are the twenty simulated temporal concentrations. The 
predicted outputs from the I-model, i.e., Ninety-six source fluxes predicted from all the well 
models, are utilized as the input for the II-model. Similarly, the twelve average values of 
each source flux predicted from the I-model from different wells are utilized as the input for 
the III-model. The source fluxes predicted from the II-model are the inputs into the IV- 
-model. The source fluxes that cause these values of concentration in observation wells are 
the outputs of the models.  

 

Fig. 5. ANN-I model architecture 

Figure 5 illustrates the ANN-I model architecture. This model consists of twenty 
simulated temporal concentration measurements (Xi1–Xi20) (complete BTC) as input in 
each well, i corresponds to the number of models, i.e., 8. The output of the model is 
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twelve corresponding source fluxes as target values per pattern (yi1–yi12) for each set of 
inputs, output Yij obtained from one set of input Xij is illustrated in Fig. 5.  

 

Fig. 6. ANN-II model architecture 

Figure 6 illustrates the ANN-II model architecture. The model consists of 96 input 
values which are predicted as Yij (by applying it to each observation well, i.e., i = 8 and 
j = 12 corresponds to the output obtained from ANN-I model for each input pattern). 
Hence, j = 12 inputs are applied as inputs in each ANN-II model, for 8 such models 
leading to 96 inputs. Twelve corresponding source fluxes as the target in (Z1–Z12) are 
obtained for each pattern i.  

 

Fig. 7. ANN-III model architecture 

Similarly, the ANN-III model (Fig. 7) consists of twelve average values of source 
fluxes as inputs which are predicted from the ANN-I model (by applying it to each 
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observation well), and twelve corresponding source flux values as the target in each pat-
tern. The same approach is used to design the ANN-IV model which consists of twelve 
input values predicted from ANN-II models, and twelve corresponding source flux values 
as the target in each pattern.  

  

Fig. 8. ANN-IV model architecture 

The type-1 model consists of 20 simulated temporal concentration measurements 
(complete BTC) as input in each well (Fig. 5). 

The type-2 model consists of 32 input values which are predicted from the type-1 
models (by applying it to each observation well) (Fig. 6). 

The type-3 model consists of 8 average values of source fluxes as inputs which are 
predicted from the type-1 model (by applying it to each observation well) (Fig. 7). 

The type-4 model consists of 8 input values which are predicted from the type-2 
model (Fig. 8). 

5. NOVEL HCA-ANN MODEL FOR PREDICTION 
OF GROUNDWATER CONTAMINATION  

This section describes a new hybrid model, i.e., the HCA-ANN model, based on 
Hierarchal K-means clustering Algorithm (HCA) and ANN. The training dataset was 
first partitioned into k clusters by HCA. We then developed ANN models based on the 
acquired clusters. The CLARA method was applied to individual k clusters on training 
dataset [25]. Total Within Sum of Square (TWSS) was calculated for various values of k as 
shown in Fig. 9.  
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Fig. 9. Total within the sum of square (TWSS) vs. number of clusters graph  
for determining the optimal value of the number of required clusters (K) 

It can be observed that the TWSS decreases sharply in the range of 1–2 of K, and 
the TWSS decreases gradually from 2 (Fig. 9). This result recommends that the entire 
data set of resource flux should be divided into 2 clusters. The first cluster contains 
94 observations. The second cluster consists of 81 observations, as shown in Fig. 10.  

 

Fig. 10. Division of the given dataset in two clusters as per the HCA algorithm 

By HCA clustering data with homologous characteristics were grouped into clus-
ters. Those are represented by two principal components, Dim 1 and Dim 2. These two 



 Prediction of groundwater contamination using hybrid clustering-based AI model 117 

principal components account for 19.7 + 46.6 = 66.3% of the variance in the data set. 
After separating the clusters with the HCA algorithm, an ANN model was considered 
and developed based on the result clusters. For each cluster, best-fit ANN models were 
developed to estimate the flux generated by the contamination. The block diagram of 
the proposed HCA-ANN model for flux prediction is shown in Fig. 11.  

 

Fig. 11. Flowchart of the proposed HCA-ANN model to predict flux in this study 

T a b l e  3  

Performance indices of ANN models 

Model 
APE 
[%] 

Correlation 
coefficient 

 R 

Normalised 
error 
NE 

PBIAS 
[%] MENASH RMSE 

[%] 

Train  Test Train  Test Train  Test Train Test Train Test Train Test 
ANN-I 28.36 26.8 0.5 0.85 0.51 0.66 –0.01 0.793 0.25 0.34 2.15 1.99 
ANN-II 23.26 22.87 0.56 0.81 0.35 0.46 1.45 4.94 0.4 0.59 1.78 1.85 
ANN-III 23.66 19.08 0.55 0.86 0.33 0.32 –0.24 –0.094 0.65 0.63 2.01 1.49 
ANN-IV 25.7 22.37 0.49 0.84 0.23 0.29 0.04 0.586 0.31 0.51 2.07 1.69 

6. RESULTS AND DISCUSSION 

Figure 11 shows the pictorial representation of the concentration changes with time, 
based on a ten-year simulated plume for the study area. For 180 days, it can be seen that 
the contour concentration has been evolving. Further, Fig. 12b–i indicates the contour 
concentration is moving towards Hsu-Hsian Creek, which is potentially contaminating 
usable water. 
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a) 365 days 

 

b) 730 days 

 

c) 1095 days 

 
d) 1460 days 

 

e) 1825 days 

 

f) 2190 days 

 
g) 2555 days 

 

h) 2920 days 

 

i) 3650 days 

 

Fig. 12. Contaminant transport contours at different time periods;  
contamination levels: blue – lowest to red – highest) 

We evaluate the developed models for the demonstrative identification problem, 
where the magnitude of source fluxes is unknown. The proposed HCA-ANN model 
performed comparatively better in training and testing phase. Further, this model is ap-
plied to identify the magnitude of contaminant sources. The actual and predicted source 
flux are compared in Fig. 13 with the respective normalized error (NE) values. 

 

Fig. 13. Actual and predicted source flux of different models  
with their respective normalized error (NE) values 

The proposed HCA-ANN model provided the best performance for predicting con-
tamination flux in this study (Fig. 13). The results indicate that the HCA-ANN algorithm 
seems more robust than the ANN algorithm alone. In Figure 14, measured and predicted 
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values of the proposed HCA-ANN model are compared. The HCA-ANN model has the 
best convergence and hence it can predict the source flux with more accuracy as com-
pared with other models.  

 

Fig. 14. The accuracy of the models on the testing dataset 
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Fig. 15. Correlation of measured flux value and predicted flux values for different models 

The measured and predicted values of the different models and the proposed HCA- 
-ANN model have been plotted in Fig. 15. The best convergence on the regression line 
is obtained with HCA-ANN with R = 0.976. This clearly explains the superior perfor-
mance of the proposed HCA-ANN model compared with the other models. 

7. CONCLUSIONS 

The soft computing-based contamination source identification method has been de-
veloped. The applicability of the developed method has been demonstrated for various 
types of models using different methods of representing inputs. Multilevel models are 
developed using ANN. Further, the hierarchical K-means clustering algorithm is em-
ployed to cluster the dataset, and the hybrid predicting models were developed by using 
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ANN and hierarchical K-means clustering. These models were applied to a complex real 
area. The transport pattern of the contamination is also obtained by using GMS simula-
tion models. 250 input-output patterns were generated in each scenario, out of which 
175 were used for the training and 75 for testing. Each breakthrough curve (BTC) con-
tains 20 time intervals (each of 6 months duration), which are then used for making 
different models. All four models are developed using ANN. These 175 input patterns 
are clustered into two different clusters. Further, best best-performing ANN algorithm 
was identified and used on these two developed clusters. The predictive effectiveness 
of developed models was evaluated based on performance indices. The results show that 
the HCA-ANN model approach can accurately predict the groundwater contamination 
sources. 
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